Transport in Porous Media

, Volume 69, Issue 1, pp 33–53 | Cite as

NMR for equilateral triangular geometry under conditions of surface relaxivity—analytical and random walk solution

  • Jan Finjord
  • Aksel Hiorth
  • Unn H. a Lad
  • Svein M. Skjæveland
Original Paper

Abstract

We consider analytical and numerical solution of NMR relaxation under the condition of surface relaxation in an equilateral triangular geometry. We present an analytical expression for the Green’s function in this geometry. We calculate the transverse magnetic relaxation without magnetic gradients present, single-phase, both analytically and numerically. There is a very good match between the analytical and numerical results. We also show that the magnetic signal from an equilateral triangular geometry is qualitatively different from the known solution: plate, cylinder, and sphere, in the case of a nonuniform initial magnetization. Nonuniform magnetization close to the sharp corners makes the magnetic signal very fast multiexponential. This type of initial configuration fits qualitatively with the experimental results by Song (Phys. Rev. Lett. 85, 3878 (2000)), Song et al. (Nature 406, 178 (2000)), Song (Mag. Reson. Imag. 19, 417 (2001)) and Lisitza and Song (Phys. Rev. B 65, 172406 (2002)). It should also be noted that the solution presented here can be used to describe absorption of a chemical substance in an equilateral triangular geometry (for a stationary fluid).

Keywords

CPMG NMR Diffusion Equilateral triangle Random walk Analytical 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Mahrooqi, S., Grattoni, C., Muggeridge, A., Zimmerman, R., Jing, X.: Pore-scale modelling of nmr relaxation for the characterization of wettability. Paper presented at the 8th International Symposium on Reservoir Wettability, Houston, May 16–18, 2004Google Scholar
  2. Bergman D., Dunn K., Schwartz L., Mitra P. (1990) Self-diffusion in a periodic porous medium: a of different approaches. Phys. Rev. E 51, 3393–3400CrossRefGoogle Scholar
  3. Brownstein K., Tarr C. (1979) Importance of classical diffusion in NMR studies of water in biological cells. Phys. Rev. A 19, 2446–2453CrossRefGoogle Scholar
  4. Brownstein K., Tarr C. (1977) Spin–lattice relaxation in a system governed by diffusion. J. Mag. Reson. 26, 17–24Google Scholar
  5. Callaghan P. (1991) Principles of Nuclear Magnetic Resonance Microscopy. Oxford University Press, OxfordGoogle Scholar
  6. Carr H., Purcell E. (1954) Effects of diffusion on free precession in NMR experiments. Phys. Rev. 94, 630CrossRefGoogle Scholar
  7. Freedmann, R., Heaton, N., Flaum, M., Hirasaki, G., Flaum, C., Hürlimann, M.: Wettability, saturation, and viscosity using the magnetic resonance fluid characterizing method and new diffusion-editing pulse sequences. SPE 77397, 2002 SPE Annual Technical Conference and Exhibition, San Antonio, September 29–October 2Google Scholar
  8. Heaton, N., Freedman, R., Karmonik, C., Taherian, R., Walter, K., Depavia, L.: Application of a new-generation NMR wireline logging tool, SPE 77400, 2002 SPE Annual Technical Conference and Exhibition, San Antonio, September 29–October 2Google Scholar
  9. van Dijke M., Sorbie K. (2003) Three-phase capillary entry conditions in pores of noncircular cross-section. J. Colloid Interface Sci. 260, 385–397CrossRefGoogle Scholar
  10. Helland, J., Skjæveland, S.M.: Physically based capillary pressure corelation for mixed wet reservoir from a bundle of tubes model. SPE 89428, 2004 SPE/DOE Fourteenth symposium on improved oil recovery, Tulsa, April 17–21Google Scholar
  11. Helland, J., Skjæveland, S.M.: Three-phase mixed-wet capillary pressure curves from a bundle-of-triangular-tubes model. The 8th International Symposium on Reservoir Wettability, Houston, May 16–18, 2004Google Scholar
  12. Howard J.J. (1998) Quantitative estimates of porus media wettability from proton NMR measurements. Magn. Reoson. Img. 16, 529–533CrossRefGoogle Scholar
  13. Hui M., Blunt M. (2000) Effects of wettability on three-phase flow in porous media. J. Phys. Chem. B 104, 3833–3845CrossRefGoogle Scholar
  14. Hürliman M., Venkataramanan L. (2002) Quantitative measurement of two-dimensional distribution functions of diffusion and relaxation in grossly inhomogeneous fields. J. Mag. Reson. 157, 31–42CrossRefGoogle Scholar
  15. Hürlimann, M., Venkataramanan, L., Flaum, C., Speier, P., Karmonik, C., Freedman, R., Heaton, N.: Diffusion-editing: New NMR measurement of saturation and pore geometry. The 2002 SPWLA Annual Logging Symposium, Houston, June 2–5Google Scholar
  16. Jackson, M., Valvatne, P., Blunt, M.: Prediction of wettability variation and its impact on waterflooding using pore- to reservoir-scale simulation. SPE 77543, 2002 SPE Annual Technical Conference and Exhibition, San Antonio, September 29–October 2Google Scholar
  17. Lisitza M., Song Y. (2002) Manipulation of the diffusion eigenmodes in porous media. Phys. Rev. B 65:172406CrossRefGoogle Scholar
  18. Marinelli L., Hürlimann M.D., Sen P.N. (2003) Modal analysis of q-space relaxation correlation experiments. J. Chem. Phys. 118(19):8927–8940CrossRefGoogle Scholar
  19. Mason G., Morrow N. (1991) Capillary behavior of a perfectly wetting liquid in irregular triangular tubes. J. Coll. Int. Sci. 141, 262–274CrossRefGoogle Scholar
  20. Matsumoto, M., Nishimura, T.: Dynamic Creation of Pseudorandom Number Generators, Monte Carlo and Quasi-Monte Carlo Methods 1998, pp. 56–69. Springer (2000)Google Scholar
  21. Matsumoto M., Nishimura T. (1998) Mersenne Twister: a 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans. Mod. Comp. Sim. 8, 3–30CrossRefGoogle Scholar
  22. Mccartin B. (2003) Eigenstructure of the equilateral triangle, Part I: the Dirichlet problem. SIAM Rev. 45, 267–287CrossRefGoogle Scholar
  23. Mccartin B. (2002) Eigenstructure of the equilateral triangle, Part II: the Neuman problem triangle. Math. Probl. Eng. 8, 517–539CrossRefGoogle Scholar
  24. Mccartin B. (2004) Eigenstructure of the equilateral triangle. Part III. The Robin problem. IJMMS 16, 807–825CrossRefGoogle Scholar
  25. Meiboom S., Gill D. (1958) Compensation for pulse imperfections in Carr-Purcell NMR experiments. Rev. Sci. Instrum. 29, 688CrossRefGoogle Scholar
  26. Mendelson K. (1993) Continuum and random-walk models of magnetic relaxation in porous media. Phys. Rev. B 47, 1081–1083CrossRefGoogle Scholar
  27. Mendelson K. (1990) Percolation model of nuclear magnetic relaxation in porous media. Phys. Rev. B 41, 562–567CrossRefGoogle Scholar
  28. Mitra P., Sen P., Schwartz L. (1993) Short time behavior of the diffusion coefficient as a geometrical probe of porous media pore geometries. Phys. Rev. B 47, 8565–8574CrossRefGoogle Scholar
  29. Morrow N., Mason G. (2001) Recovery of oil by spontaneous imbibition. Curr. Opin. Coll. Int. Sci. 6, 321CrossRefGoogle Scholar
  30. Piri, M., Blunt, M.: Pore-scale modeling of three-phase flow in mixed-wet system. SPE 77726, 2002 SPE Annual Technical Conference and Exhibition, San Antonio, September 29–October 2Google Scholar
  31. Press, W. et al.: Numerical Recipes in C. Cambridge (1992)Google Scholar
  32. Price W. (197) Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational Part 1. Basic theory. Concepts Magn. Reson. 9, 299–336CrossRefGoogle Scholar
  33. Price W. (1998) Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational Part II. Experimental aspects. Concepts Magn. Reson. 10, 197–237CrossRefGoogle Scholar
  34. Radke, C., Kovscek, A., Wong, H.: A pore-level scenario for the development of mixed wettability. SPE 24880, the 1992 Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Washington, DC, October 4–7Google Scholar
  35. Song Y. (2000a) Detection of the High Eigenmodes of Spin Diffusion in Porous Media. Phys. Rev. Lett. 85:3878CrossRefGoogle Scholar
  36. Song Y., Ryu S., Sen P.N. (2000b) Determining multiple length scales in rocks. Nature 406, 178CrossRefGoogle Scholar
  37. Song Y. (2001) Pore sizes and pore connectivity in rocks using the effect of internal field. Mag. Reson. Img. 19, 417CrossRefGoogle Scholar
  38. Toumelin, E., Torres-Verdin, C., Chen, S.: Modeling of multiple echo-time NMR measurements for complex pore geometries and multiphase saturations. SPE 85635, 2002 SPE Annual Technical Conference and Exhibition, San Antonio, September 29–October 2Google Scholar
  39. Valfouskaya A., Adler P.M., Thovert J.-F., Fleury M. (2005) Nuclear-magnetic-resonance diffusion simulations in porous media. J. Appl. Phys. 97:083510CrossRefGoogle Scholar
  40. Valfouskaya A., Adler P.M., Thovert J.-F., Fleury M. (2006) Nuclear magnetic resonance diffusion with surface relaxation in porous media. J. Coll. Int. Sci. 295, 188CrossRefGoogle Scholar
  41. Valfouskaya A., Adler P.M. (2005) Nuclear-magnetic-resonance diffusion simulations in two phases in porous media. Phys. Rev. E 72:056317CrossRefGoogle Scholar
  42. van Dijke M., Sorbie K. (2003) Three-phase capillary entry conditions in pores of noncircular cross-section. J. Colloid Interface Sci. 260, 385–397CrossRefGoogle Scholar
  43. Wilkinson D., Johnson D., Schwartz L. (1991) Nuclear magnetic relaxation in porous media: the role of the mean lifetime τ(ρ,D). Phys. Rev. B 44, 4960–4973CrossRefGoogle Scholar
  44. Zhang Q., Huang C., Hirasaki G. (2000) Interpretation of wettability in sandstones With NMR analysis. Petrophysics 41(3):223–233Google Scholar
  45. Zielinski L.J., Song Y., Ryu S., Sen P.N. (2002) Characterization of coupled pore systems from the diffusion eigenspectrum. J. Chem. Phys. 117:5361CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Jan Finjord
    • 2
  • Aksel Hiorth
    • 1
  • Unn H. a Lad
    • 1
  • Svein M. Skjæveland
    • 2
  1. 1.RF-Rogaland ResearchStavangerNorway
  2. 2.University of StavangerStavangerNorway

Personalised recommendations