Transport in Porous Media

, Volume 67, Issue 2, pp 243–274 | Cite as

On Ions Transport during Drying in a Porous Medium

  • N. Sghaier
  • M. PratEmail author
  • S. Ben. Nasrallah
Original Paper


Salt crystallisation at the surface or in a porous medium has been recognised as a major mechanism of deterioration of buildings and historical monuments. Often crystallisation occurs when the concentration of salt dissolved in the water contained in the porous medium reaches the saturation concentration as the result of evaporation. In order to predict the evolution of the ion distribution during drying, we develop a simple volume averaged model combining a semi-analytical model of drying with the numerical computation of the ions transport. The model is used to analyse the influence of the drying rate, size of the porous medium, average pore size and initial ion concentration on the ion distribution during drying and therefore the possible location of crystallisation.


Drying Ions transport Crystallisation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benavente D., Garcia del Cura M.A., Garcia-Guinea J., Sanchez-Moral S., Ordenez S. (2004). Role of pore structure in salt crystallization in unsaturated porous stone. J. Crys. Growth. 260(3–4):532–544CrossRefGoogle Scholar
  2. Ben Nasrallah S., Damak O., Ben Dhia H., Arnaud G. (1991). Transfert de soluté au cours du séchage convectif. Int. J. Heat Mass Transfer 34:911–917CrossRefGoogle Scholar
  3. Bouhlila, R.: Ecoulements transports et réactions Géochimiques couplés dans les milieux poreux. Cas des sels et des saumures, Ph.D Thesis, ENIT, Tunis (1999)Google Scholar
  4. Buenfeld, N.R., Shurafa-Daoudi, M.-T., McLoughlin, I.M.: Chloride transport due to wick action in concrete. In: Nilsson, L.O., Ollivier, J.P. (eds.) Chloride Penetration into Concrete, pp. 315–324, RILEM, Paris, (Proc. RILEM Int. Workshop on Chloride Penetration into Concrete, 1995).Google Scholar
  5. Camassel B., Sghaier N., Prat M., Ben Nasrallah S. (2005). Ions transport during evaporation in capillary tubes of polygonal cross section. Chem. Eng. Sci. 60:815–826CrossRefGoogle Scholar
  6. Coussot P. (2000). Scaling approach to the convective drying of a porous medium. Eur. Phys. J. B 15:557–566CrossRefGoogle Scholar
  7. Durán J.D.G., Ontiveros A., Chibowski E., González-Caballero F. (1999). Deposition of Colloidal Zinc Sulfide on Glass Substrate. J. Colloid Interf. Sci. 214:53–63CrossRefGoogle Scholar
  8. Febvre, C.: Modélisation de l’évaporation naturelle sur un salin. Mémoire Diplôme d’Ingénieur, CNAM (1982)Google Scholar
  9. Finkayson B.C. (1992). Numerical Methods for Problems with Moving Fronts. Ravenna Park Publishing, Seatttle, WAGoogle Scholar
  10. Flatt, R.J., Scherer, G.W.: Hydration and crystallization pressure of sodium sulfate: a critical review. In: Materials Issues in Art and Archaeology—Symposium 2001, vol. 712, pp. 29–34. (Boston 2002)Google Scholar
  11. Huinink H.P., Pel L., Michels M.A.J. (2002a). How ions distribute in a drying porous medium: A simple model. Phys. fluids 14(4):1389–1395CrossRefGoogle Scholar
  12. Huinink H.P., Pel L.J., Michels M.A., Prat M. (2002b). Drying processes in the presence of temperature gradients. Pore –scale modelling. Eur. Phys. J. E. 9:487–498CrossRefGoogle Scholar
  13. Huinink, H. P., Pel, L., Michels, M.A.J.: Structure and transport properties of liquid clusters in a drying porous medium. Phys. Rev. E, 68, 056114 (2003)Google Scholar
  14. Goudie A., Viles H. (1997). Salt Weathering Hazards. Wiley, ChichesterGoogle Scholar
  15. Laurindo J.B., Prat M. (1998). Numerical and experimental network study of evaporation in capillary porous media. Drying rates. Chem. Eng. Sci. 53(12):2257–2269Google Scholar
  16. Le Bray Y., Prat M. (1999). Three dimensional pore network simulation of drying in capillary porous media. Int. J. Heat and Mass Transfer 42:4207–4224CrossRefGoogle Scholar
  17. Lim P.C., Barbour S.L., Fredlund D.L. (1998). The influence of degree of saturation on the coefficient of aqueous diffusion. Can. Geotech. J. 35:811–827CrossRefGoogle Scholar
  18. Kaviany M. (1991). Principles of heat transfer in porous media mechanical engineering series. Springer-verlag, New YorkGoogle Scholar
  19. Krisher, O.: Die wissenschaftlichen Grundlagen der Trocknungstechnik, 1, 298, Springer, Berlin (1963).Google Scholar
  20. Masmoudi W., Prat M. (1991). Heat and mass transfer between a porous medium and a parallel external flow, application to drying of capillary porous materials. Int. J. Heat Mass Trans. 34(8):1975–1989CrossRefGoogle Scholar
  21. Mayer G., Wittmann F.H. (1996). Ein modell zur Beschreibung des Wasser-und Salztransports in Mauerwerk. Int. Zeitschrift für Bauinstandsetzen 2(1):67–82Google Scholar
  22. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. HPC, Washingdon, DC: Hemisspere (1980).Google Scholar
  23. Pitzer K.S. (1973). Thermodynamics of electrolytes, I. Theorical basis and general equations. J Phys. Chem. 77:268–277CrossRefGoogle Scholar
  24. Prat M. (2002). Recent advances in pore-scale models for drying of porous media. Chem. Eng. J. 86(1–2):153–164CrossRefGoogle Scholar
  25. Puyate Y.T., Lawrence C.J. (1999). Effect of solute parameters on wick action in concretre. Chem. Eng. Sci. 54:4257–4265CrossRefGoogle Scholar
  26. Scherer G.W. (1999). Crystallization in pores. Cement concrete Res. 29:1347–1358CrossRefGoogle Scholar
  27. Sghaier, N., Prat, M, Ben Nasrallah, S.: On the influence of sodium chloride concentration on equilibrium contact angle. Chem. Eng. J. (2006, in press). Institut National Polytechnique de Toulouse and Ecole Nationale d’Ingénieur de Monastir, in preparation.Google Scholar
  28. Sghaier, N., Prat, M., Ben Nasrallah, S.: Drying processes in the presence of salt, pore scale modeling, Proceedings of ICAPM 2004, pp. 573–578, 24–27 May 2004, Évora, Portugal (2004)Google Scholar
  29. Stauffer D. Aharaony A. (1992). Introduction to Percolation Theory. Taylor & Francis, LondonGoogle Scholar
  30. Van Brakel J. (1980). Mass transfer in convective drying. In: Mujumdar A.S. (eds) Advances in Drying. Hemisphere, New-York, pp. 217–267Google Scholar
  31. Whitaker S. (1999). The Method of Volume Averaging. Kluwer Academic publishers, DordrechtGoogle Scholar
  32. Yiotis A.G., Boudouvis A.G., Stubos A.K., Tsimpanogiannis I.N., Yortsos Y.C. (2004). The effect of liquid films on the drying of porous media. AiChE J. 50(11):2721–2737CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Laboratoire d’ Etudes des Systèmes Thermiques et EnergétiquesEcole Nationale, d’Ingénieurs de MonastirMonastirTunisie
  2. 2.Institut de Mécanique de Fluide de ToulouseUMR CNRS – INPT/UPSToulouseFrance

Personalised recommendations