Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Quantifying Uncertainty in Flow Functions Derived from SCAL Data

USS Relative Permeability and Capillary Pressure

  • 116 Accesses

  • 7 Citations

Abstract

Unsteady-state (USS) core flood experiments provide data for deriving two-phase relative permeability and capillary pressure functions. The experimental data is uncertain due to measurement errors, and the accuracy of the derived flow functions is limited by both data and modeling errors.

History matching provides a reasonable means of deriving in-phase flow functions from uncertain unsteady-state experimental data. This approach is preferred to other analytical procedures, which involve data smoothing and differentiation. Data smoothing leads to loss of information while data differentiation is a mathematically unstable procedure, which could be error magnifying. The problem is non-linear, inverse and ill posed. Hence the history-matching procedure gives a non-unique solution.

This paper presents a procedure for quantifying the uncertainty in two-phase flow functions, using unsteady-state experimental data. We validate the methodology using synthetic data.

We investigate the impact of uncertain flow functions on a homogeneous reservoir model using the Buckley–Leverett theory. Using a synthetic, heterogeneous reservoir model, we estimate the uncertainty in oil recovery efficiency due to uncertainty in the flow functions.

This is a preview of subscription content, log in to check access.

References

  1. S. Akin L.M. Castanier W.E. Brigham (1999) ArticleTitleEffect of temperature on heavy oil/water relative permeabilities Soc. Petrol. Eng. J. 54120 1–11

  2. J.S. Archer P.G. Wall (1991) Petroleum Engineering: Principles and Practice Graham & Trotman London

  3. J. S. Archer S. W. Wong (1973) ArticleTitleUse of a reservoir simulator to interpret laboratory waterflood data Soc. Petrol. Eng. J. 3551 343–347

  4. S.E. Buckley M.C. Leverett (1942) ArticleTitleMechanisms of fluid displacement in sands Trans. Am. Inst. Min. Eng. 146 107–116

  5. G. Chavent G. Cohen M. Espy (1980) ArticleTitleDetermination of relative permeabilities and capillary pressures by an automatic adjustment method Soc. Petrol. Eng. 9237 1–10

  6. G.L. Chierici (1981) ArticleTitleNovel relations for drainage and imbibition relative permeabilities Soc. Petrol. Eng. 10165 1–10

  7. M.A. Christie (1996) ArticleTitleUpscaling for reservoir simulation Soc. Petrol. Eng. 37324 1–5

  8. M.A. Christie M.J. Blunt (2001) ArticleTitleTenth SPE Comparative Solution Project: a comparison of upscaling techniques Soc. Petrol. Eng. 66599 1–9

  9. F. Civan E.C. Donaldson (1987) ArticleTitleRelative permeability from unsteady-state displacements: an analytical interpretation Soc. Petrol. Eng. 16200 139–155

  10. Civan F. and Donaldson E. C. (1989). Relative permeability from unsteady-state displacements with capillary pressure included. SPE Form. Eval. (June) 189–193.

  11. E.R. Collins (1976) Flow of Fluids through Porous Materials PennWell Books Tulsa, Oklahoma

  12. A.T. Corey (1954) ArticleTitleThe Interrelation between gas and oil permeabilities Producers Monthly 19 38–41

  13. Craig, F. F. Jr. (1971). The Reservoir Engineering Aspects of Waterflooding, Society of Petroleum Engineers of AIME, New York.

  14. Floris, F. J. T., Bush, M. D., Cuypers, M., Roggero, F. and Syversveen, A. R. (1999). Comparison of production forecast uncertainty quantification methods – an integrated study, in: Proceedings of 1st Conference on Petroleum Geostatistics, Toulouse, France, pp. 1–20.

  15. S.C. Gabbanelli A.G. Mezzatesta M.S. Bidner (1982) ArticleTitleOne-dimensional numerical simulation of waterflooding an oil reservoir Lat. Am. J. Heat Mass. Transf. 6 251–273

  16. S. Geman D. Geman (1984) ArticleTitleStochastic relaxation, Gibbs distributions and the Bayesian restoration of images IEEE Trans. Pattern Anal. Mach. Int. 6 721–741 Occurrence Handle10.1109/TPAMI.1984.4767596

  17. P.E. Gill W. Murray (1981) Practical Optimization Academic Press New York City

  18. J. Glimm S. Hou Y.H. Lee D. Sharp K. Ye (2001) ArticleTitlePrediction of oil preduction with confidence intervals Soc. Petrol. Eng. 66350 1–15

  19. J. Glimm S. Hou H. Kim D.H. Sharp (2001) ArticleTitleA probability model for errors in the numerical solutions of a partial differential equation Fluid Dyn. J. 9 485–493

  20. C.A. Grattoni M.S. Bidner (1990) ArticleTitleHistory matching of unsteady-state corefloods for determining capillary pressure and relative permeabilities Soc. Petrol. Eng. 21135 1–8

  21. K.M. Hansen G.S. Cunningham R.J. McKee (1977) ArticleTitleUncertainty assessment for reconstruction based on deformable geometry Int. J. Imag. Syst. Technol. 8 506–512 Occurrence Handle10.1002/(SICI)1098-1098(1997)8:6<506::AID-IMA2>3.0.CO;2-E

  22. M. Honarpour L. Koederitz A.H. Harvey (1986) Relative Permeability of Petroleum Reservoirs CRC Press, Inc. Boca Raton, Florida

  23. E.F. Johnson D.P. Bossler V.O. Naumann (1959) ArticleTitleCalculation of relative permeability from displacement experiments Trans. Am. Inst. Min. Eng. 216 370–372

  24. P.D. Kerig A.T. Watson (1987) ArticleTitleA new algorithm for estimating relative permeabilities from displacement experiments Soc. Petrol. Eng. Reserv. Eval. 2 IssueID1 103–112

  25. D.J. MacMillan (1987) ArticleTitleAutomatic history matching of laboratory corefloods to obtain relative-permeability curves Soc. Petrol. Eng. Reserv. Eval. 2 IssueID1 85–91

  26. C. M. Marle (1981) Multiphase Flow in Porous Media Gulf Pub. Co. Texas

  27. J.S. Osoba J.G. Richardson J.K. Kerver J.A. Hafford P.M. Blair (1951) ArticleTitleLaboratory measurements of relative permeability Trans. Am. Ins. Min. Eng. 192 47–56

  28. J.G. Richardson J.K. Kerver J.A. Hafford J.S. Osoba (1952) ArticleTitleLaboratory determination of relative permeability Trans. Am. Inst. Min. Eng. 195 187–196

  29. P.C. Richmond A.T. Watson (1990) ArticleTitleEstimation of multiphase flow functions from displacement experiments Soc. Reserv. Eng. 18569 1–7

  30. M. Sambridge (1998) ArticleTitleExploring multidimensional landscapes without a map Inverse Probl. 14 427–440 Occurrence Handle10.1088/0266-5611/14/3/005

  31. M. Sambridge (1999) ArticleTitleGeophysical inversion with a neighbourhood algorithm – 1. Searching a parameter space Geophys. J. Int. 138 479–494 Occurrence Handle10.1046/j.1365-246X.1999.00876.x

  32. M. Sambridge (1999) ArticleTitleGeophysical inversion with a neighbourhood algorithm – II. Appraising the ensemble Geophys. J. Int. 138 727–745 Occurrence Handle10.1046/j.1365-246x.1999.00900.x

  33. G.B. Savioli M.S. Bidner (1982) ArticleTitleThe influence of capillary pressure when determining relative permeability from unsteady-state corefloods Soc. Petrol. Eng. 23698 1–10

  34. L.L. Schumaker (1981) Spline Functions: Basic Theory John Wiley & Sons New York

  35. P.M. Sigmund F.G. McCaffery (1979) ArticleTitleAn improved unsteady-state procedure for determining the relative-permeability characteristics of heterogeneous porous media Soc. Petrol. Eng. J. 6720 1–14

  36. D.S. Sivia (1996) Data Analysis – A Bayesian Tutorial Clarendon Press Oxford

  37. Subbey S. (2000). Regularizing the Volterra Integral Equation – the Capillary Pressure Case. PhD thesis. University of Bergen, Norway

  38. S. Subbey M. Christie M. Sambridge (2002a) ArticleTitleA strategy for rapid quantification of uncertainty in reservoir performance prediction Soc. Petrol. Eng. 79678 1–12

  39. S. Subbey M. Christie M. Sambridge (2002b) ArticleTitleUncertainty reduction in reservoir modeling SIAM Contemp. Math. 295 457–467

  40. S. Subbey M. Christie M. Sambridge (2004) ArticleTitleThe impact of uncertain centrifuge capillary pressure on reservoir simulation SIAM J. Sci. Comput. 26 IssueID2 537–557 Occurrence Handle10.1137/S1064827503426747

  41. Tao T.M. and Watson A.T. (1984). Accuracy of JBN estimates of relative permeability: part 1 – error analysis. SPEJ (April) 209–214.

  42. Tao, T. M. and Watson, A. T.: (1984), Accuracy of JBN estimates of relative permeability: part 2 – algorithms. SPEJ (April) 215–223.

  43. A. Tarantola (1987) Inverse Problem Theory, Methods for Data Fitting and Model Parameter Estimation Elsevier Science Publishers Amsterdam, The Netherlands

  44. A.T. Watson R. Kulkarni J.-E. Nordtvedt A. Sylte H. Urkedal (1998) ArticleTitleEstimation of porous media flow functions Meas. Sci. Technol. 9 898–905 Occurrence Handle10.1088/0957-0233/9/6/006

  45. H.J. Welge (1952) ArticleTitleA simplified method for computing oil recovery by gas or water drive Trans. Am. Inst. Min. Eng. 195 91–98

  46. Willhite G. P. (1986). Waterflooding, Society of Petroleum Engineers, Richardson, TX.

Download references

Author information

Correspondence to S. Subbey.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Subbey, S., Monfared, H., Christie, M. et al. Quantifying Uncertainty in Flow Functions Derived from SCAL Data. Transp Porous Med 65, 265–286 (2006). https://doi.org/10.1007/s11242-005-5998-2

Download citation

Keywords

  • unsteady-state
  • relative permeability
  • capillary pressure
  • uncertainty
  • Buckley–Leverett
  • heterogeneous reservoir
  • oil recovery potential

AMS Classifications

  • Primary 93A30
  • Secondary 74G75