Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Analytical Solutions to Multiphase First-Contact Miscible Models with Viscous Fingering

Abstract

In this paper, we analyze an empirical model of viscous fingering for three-component, two-phase, first-contact miscible flows. We present the complete range of analytical solutions to secondary and tertiary water-alternating-gas (WAG) floods. An important ingredient in the construction of analytical solutions is the presence of detached (nonlocal) branches of the Hugoniot locus, that is, curves in composition space that satisfy the Rankine–Hugoniot conditions but do not contain the reference state. We illustrate how, in water–solvent floods into a medium with mobile water and residual oil (immobile to water), the solvent front and the water Buckley–Leverett front may interact, resulting in a leading water/solvent shock that is stable to viscous fingering. The analytical solutions explain why in these miscible tertiary floods, oil and solvent often break through simultaneously. We discuss the implications of the new solutions in the design of miscible tertiary floods, such as the estimation of the optimum WAG ratio.

This is a preview of subscription content, log in to check access.

References

  1. F. Ancona A. Marson (2001) ArticleTitleA note on the Riemann problem for general n × n conservation laws J. Math. Anal. Appl. 260 279–293 Occurrence Handle10.1006/jmaa.2000.6721

  2. T. Barkve (1989) ArticleTitleThe Riemann problem for a nonstrictly hyperbolic system modeling nonisothermal two-phase flow in a porous medium SIAM J. Appl. Math. 49 IssueID3 784–798 Occurrence Handle10.1137/0149045

  3. R.J. Blackwell J.R. Rayne W.M. Terry (1959) ArticleTitleFactors influencing the efficiency of miscible displacements Petrol. Trans. AIME 216 1–8

  4. M. Blunt M. Christie (1993) ArticleTitleHow to predict viscous fingering in three component flow Transp. Porous Media 12 207–236 Occurrence Handle10.1007/BF00624459

  5. M. Blunt M. Christie (1994) ArticleTitleTheory of viscous fingering in two phase, three component flow SPE Adv. Technol. Ser. 2 IssueID2 52–60

  6. M.J. Blunt J.W. Barker B. Rubin M. Mansfield I.D. Culverwell M.A. Christie (1994) ArticleTitlePredictive theory for viscous fingering in compositional displacement SPE Reserv. Eng. 9 IssueID1 73–80

  7. B.H. Caudle A.B. Dyes (1958) ArticleTitleImproving miscible displacement by gas–water injection J. Pet. Technol. Petrol. Trans. AIME 213 281–284

  8. Y.-B. Chang M.T. Lim G.A. Pope K. Sepehrnoori (1994) ArticleTitleCO2 flow patterns under multiphase flow: heterogeneous field-scale conditions SPE Reserv. Eng. 9 IssueID3 208–216

  9. C.Y. Chen E. Meiburg (1998) ArticleTitleMiscible porous media displacements in the quarter five-spot configuration Part 1 The homogeneous case J. Fluid Mech. 371 233–268 Occurrence Handle10.1017/S0022112098002195

  10. M.A. Christie (1989) ArticleTitleHigh-resolution simulation of unstable flows in porous media SPE Reserv. Eng. 4 297–303

  11. Christie, M. A. and Jones, A. D. W.: (1987). Comparison between laboratory experiments and detailed simulation of miscible viscous fingering, in: Fourth European Symposium on Enhanced Oil Recovery, Hamburg, Germany.

  12. Christie, M. A., Jones, A. D. W. and Muggeridge, A. H.: (1990). Comparison between laboratory experiments and detailed simulations of unstable miscible displacement influenced by gravity, in: A. T. Buller et al. (eds), North Sea Oil and Gas Reservoirs–II: Proceedings of the Second North Sea Oil and Gas Reservoirs Conference (Trondheim, Norway, 8–11 May, 1989), Graham & Trotman, Norwell, MA, pp. 245–250.

  13. M.A. Christie A.H. Muggeridge J.J. Barley (1993) ArticleTitle3D simulation of viscous fingering and WAG schemes SPE Reserv. Eng. 8 19–26

  14. J.C. Mota Particleda (1992) ArticleTitleThe Riemann problem for a simple thermal model for two phase flow in porous media Mat. Aplic. Comp. 11 IssueID2 117–145

  15. A.J. Souza Particlede (1992) ArticleTitleStability of singular fundamental solutions under perturbations for flow in porous media Mat. Aplic. Comp. 11 IssueID2 73–115

  16. A.H. Falls W.M.: Schulte (1992) ArticleTitleFeatures of three component, three phase displacement in porous media SPE Reserv. Eng. 7 IssueID4 426–432

  17. F.J. Fayers M.J. Blunt M.A. Christie (1992) ArticleTitleComparison of empirical viscous-fingering models and their calibration for heterogeneous problems SPE Reserv. Eng. 7 195–203

  18. Helfferich, F. G.: (1981). Theory of multicomponent, multiphase displacement in porous media, Soc. Pet. Eng. J. 21(1), 51–62. Petrol. Trans. AIME 271.

  19. G.M. Homsy (1987) ArticleTitleViscous fingering in porous media Ann. Rev. Fluid Mech. 19 271–311 Occurrence Handle10.1146/annurev.fl.19.010187.001415

  20. E. Isaacson D. Marchesin B. Plohr J.B. Temple (1992) ArticleTitleMultiphase flow models with singular Riemann problems Mat. Aplic. Comp. 11 IssueID2 147–166

  21. T. Johansen R. Winther (1988) ArticleTitleThe solution of the Riemann problem for a hyperbolic system of conservation laws modeling polymer flooding SIAM J. Math. Anal. 19 IssueID3 541–566 Occurrence Handle10.1137/0519039

  22. R. Juanes (2005) ArticleTitleDetermination of the wave structure of the three-phase flow Riemann problem Transp. Porous Media 60 IssueID2 135–139 Occurrence Handle10.1007/s11242-004-4761-4

  23. Juanes, R., Al-Shuraiqi, H. S., Muggeridge, A. H., Grattoni, C. A. and Blunt, M. J.: (2005). Experimental and numerical validation of an analytical model of viscous fingering in two-phase, three-component flow, J Fluid Mech. (Submitted).

  24. Juanes, R. and Lie, K.-A.: (2005). A front-tracking method for efficient simulation of miscible gas injection processes, in: SPE Reservoir Simulation Symposium, Houston, TX, January 31-February 2 2005. (SPE 93298).

  25. R. Juanes T.W. Patzek (2004) ArticleTitleAnalytical solution to the Riemann problem of three-phase flow in porous media Transp. Porous Media 55 IssueID1 47–70 Occurrence Handle10.1023/B:TIPM.0000007316.43871.1e

  26. S.A. Khan G.A. Pope J.A. Trangenstein (1996) ArticleTitleMicellar/Polymer physical-property models for contaminant cleanup problems and enhanced oil recovery Transp. Porous Media 24 IssueID1 35–79 Occurrence Handle10.1007/BF00175603

  27. E.J. Koval (1963) ArticleTitleA method for predicting the performance of unstable miscible displacements in heterogeneous media Soc. Pet. Eng. J. Petrol. Trans. AIME 219 145–150

  28. Lake, L. W.: (1989). Enhanced Oil Recovery, Prentice-Hall, Englewood Cliffs, NJ.

  29. P.D. Lax (1957) ArticleTitleHyperbolic systems of conservation laws, II Comm. Pure Appl. Math. 10 537–566

  30. R. Lenormand E. Touboul C. Zarcone (1988) ArticleTitleNumerical models and experiments on immiscible displacements in porous media J. Fluid Mech. 189 165–187 Occurrence Handle10.1017/S0022112088000953

  31. K.-A. Lie R. Juanes (2005) ArticleTitleA front-tracking method for the simulation of three-phase flow in porous media Comput. Geosci. 9 IssueID1 29–59 Occurrence Handle10.1007/s10596-005-5663-4

  32. E.C. Lin E.T.S. Huang (1990) ArticleTitleThe effect of rock wettability on water blocking during miscible displacement SPE Reserv. Eng. 5 IssueID2 205–212

  33. T.-P. Liu (1974) ArticleTitleThe Riemann problem for general 2 × 2 conservation laws Trans. Amer. Math. Soc. 199 89–112 Occurrence Handle10.2307/1996875

  34. D. Marchesin B.J. Plohr (2001) ArticleTitleWave structure in WAG recovery Soc. Petrol. Eng. J. 6 IssueID2 209–219

  35. M. Muskat (1949) Physical Principles of Oil Production McGraw-Hill New York

  36. B.L. O’Steen E.T.S. Huang (1990) ArticleTitleModeling of trapped and dendritic oil mobilization during miscible displacement In Situ 14 IssueID3 285–343

  37. Pope, G. A.: (1980). The application of fractional flow theory to enhanced oil recovery, Soc. Pet. Eng. J. 20(3), 191–205, Petrol. Trans. AIME 269.

  38. M. Ruith E. Meiburg (2000) ArticleTitleMiscible rectilinear displacements with gravity override. Part. 1 Homogeneous porous medium J. Fluid Mech. 420 225–257 Occurrence Handle10.1017/S0022112000001543

  39. P.G. Saffman G.I. Taylor (1958) ArticleTitleThe penetration of a fluid into a porous medium or Hele–Shaw cell containing a more viscous liquid Proc. R. Soc. London Ser. A 245 312–329 Occurrence Handle10.1098/rspa.1958.0085

  40. D.G. Schaeffer M. Shearer (1987) ArticleTitleRiemann problems for nonstrictly hyperbolic 2 × 2 systems of conservation laws Trans. Amer. Math. Soc. 304 IssueID1 265–306 Occurrence Handle10.2307/2000714

  41. Schaeffer, D. G. and Shearer, M.: 1987b, The classification of 2×2 systems of nonstrictly hyperbolic conservation laws, with application to oil recovery, Comm. Pure Appl. Math. 40(1):141–178. Appendix with D. Marchesin and P. J. Paes-Leme.

  42. S. Schecter D. Marchesin B.J. Plohr (1996) ArticleTitleStructurally stable Riemann solutions J. Differ. Equations. 126 303–354 Occurrence Handle10.1006/jdeq.1996.0053

  43. J. Smoller (1994) Shock Waves and Reaction-Diffusion Equations EditionNumber2 Springer-Verlag New York

  44. Spiteri, E. J. and Juanes, R.: (2006). Impact of relative permeability hysteresis on the numerical simulation of WAG injection, J. Petrol. Eng. Sci. (in press).

  45. Spiteri, E. J., Juanes, R., Blunt, M. J. and Orr, Jr., F. M.: (2005). Relative permeability hysteresis: trapping models and application to geological CO2 sequestration, in: SPE Annual Technical Conference and Exhibition, Dallas, TX, October 9–12 2005. (SPE 96448)

  46. Stalkup, Jr, F. I.: (1983). Miscible Displacement, Society of Petroleum Engineers, Dallas, TX.

  47. C.T. Tan G.M. Homsy (1988) ArticleTitleSimulation of nonlinear viscous fingering in miscible displacement Phys. Fluids 6 1330–1338 Occurrence Handle10.1063/1.866726

  48. H.A. Tchelepi F.M. Orr (1994) ArticleTitleInteraction of viscous fingering, permeability heterogeneity and gravity segregation in three dimensions SPE Reserv. Eng. 9 IssueID4 266–271

  49. Todd, M. R. and Longstaff, W. J. (1972). The development, testing and application of a numerical simulator for predicting miscible flood performance, J. Petrol. Technol. 874–882.

  50. M.P. Walsh L.W. Lake (1989) ArticleTitleApplying fractional flow theory to solvent flooding and chase fluids J. Petrol. Sci. Eng. 2 281–303 Occurrence Handle10.1016/0920-4105(89)90005-3

  51. E. Zauderer (1983) Partial Differential Equations of Applied Mathematics John Wiley & Sons New York

  52. W.B. Zimmerman G.M. Homsy (1991) ArticleTitleNonlinear viscous fingering in miscible displacement with anisotropic dispersion Phys. Fluids A 8 IssueID3 1859–1872 Occurrence Handle10.1063/1.857916

Download references

Author information

Correspondence to Ruben Juanes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Juanes, R., Blunt, M.J. Analytical Solutions to Multiphase First-Contact Miscible Models with Viscous Fingering. Transp Porous Med 64, 339–373 (2006). https://doi.org/10.1007/s11242-005-5049-z

Download citation

Keywords

  • miscible flooding
  • viscous fingering
  • water-alternating-gas
  • optimum WAG ratio
  • Riemann problem
  • Hugoniot locus
  • detached branches