Transport in Porous Media

, 64:261 | Cite as

Suction Induced Effects on the Fabric of a Structured Soil

  • Azad Koliji
  • Lyesse LalouiEmail author
  • Olivier Cusinier
  • Laurent Vulliet


This paper presents the mathematical modelling of the modification of the pore space geometry of a structured soil subjected to suction increase. Structured soil concepts are first introduced considering different fabric units, such as aggregates and fissures. The numerical modelling of the structural evolution is based on experimental test results in which the evolution of the structure of the samples subjected to different suctions is determined using the mercury intrusion porosimetry technique. From this information, the macro and micropore volume evolutions are determined. The results show that drying produces a reduction in the soil total porosity which mainly corresponds to a reduction of the macropore volume. Associated with this phenomenon, an increase in micropore volume is also observed. The proposed model divides pore size distribution into three pore classes (micropores, macropores and non-affected areas). Using the concept of a suction-influenced domain, the proposed model is able to reproduce the main observed fabric evolution between the saturated and dry states.


structured soil fabric suction pore size distribution 


  1. Aifantis, E.C. 1977Introducing a multi-porous mediumDev. Mech.8209211Google Scholar
  2. Al-Mukhtar, M.: 1995, Macroscopic behavior and microstructural properties of a kaolinite clay under controlled mechanical and hydraulic state, in: Unsaturated Soils: Proc. 1st Int. Conf. on Unsaturated Soils/UNSAT 95, Paris, pp. 3–9.Google Scholar
  3. Al-Mukhtar, M., Belanteur, N., Tessier, D., Vanapalli, S.K. 1996The fabric of a clay soil under controlled mechanical and hydraulic stress statesAppl. Clay Sci1199115CrossRefGoogle Scholar
  4. Barrenblatt, G. I.: 1963, On certain boundary value problems for the equation of seepage of liquid in fissured rock, J. Appl. Math. Mech. (translation of the Soviet journal: Prikladnaja Matematika i Mekhanika (PMM)) 27, 513–518Google Scholar
  5. Barrenblatt, G. I., Zeltov, I. P. and Kochina, N.: 1960, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech. (translation of the Soviet journal: Prikladnaja Matematika i Mekhanika (PMM)) 24(5), 1286–1303.Google Scholar
  6. Brustaert, W. 1968The permeability of a porous medium determined from certain probability laws for pore-size distributionWater Resour. Res.4425434Google Scholar
  7. Coulon, E., Bruand, A. 1989Effects of compaction on the pore space geometry in sandy soilsSoil Till. Res.15137152CrossRefGoogle Scholar
  8. Cuisinier, O., Laloui, L. 2004Fabric evolution during hydromecanical loading of a compacted siltInt. J. Numer. Anal. Meth. Geomech.28483499CrossRefGoogle Scholar
  9. Delage, P., Audiguier, M., Cui, Y.-J., Howat, M.D. 1996Microstructure of compacted siltCan. Geotech. J.33150158Google Scholar
  10. Delage, P., Lefebvre, G. 1984Study of the structure of a sensitive champlain clay and of its evolution during consolidationCan. Geotech. J.212135Google Scholar
  11. Gens, A., Alonso, E. E., Suriol, J. and Lloret, A.: 1995, Effect of structure on the volumetric behavior of a compacted soil, in: Unsaturated Soils: Proc. 1st Int. Conf. on Unsaturated Soils/UNSAT 95, Paris, pp. 83–88.Google Scholar
  12. Gillot, J. E.: 1973, Methods of sample preparation for microstructural analysis of soil, in: Soil Macroscopy – 4th International Working-Meeting on Soil Micromorphology, Jamaica, Kingston, pp. 143–164.Google Scholar
  13. Griffiths, F.j., Joshi, R.C. 1990Change in pore size distribution due to consolidation of claysGeotechnique40303309CrossRefGoogle Scholar
  14. Khalili, N. and Selvadurai, A. P. S.: 2003, A fully coupled constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity, Geophys. Res. Lett. 30(24), SDE 7-1–SDE 7-5Google Scholar
  15. Khalili, N., Valliappan, S. 1996Unified theory of flow and deformation in double porous mediaEur. J. Mech. A-Solid15321336Google Scholar
  16. Lambe, T.W. 1958The engineering behaviour of compacted claysJ. Soil Mech. Found. Div. ASCE84135Google Scholar
  17. Laloui, L., Klubertanz, G., Vulliet, L. 2003Solid–Liqiud–Air coupling in multiphase porous mediaInt. J. Numer. Anal. Meth. Geomech.27183206CrossRefGoogle Scholar
  18. Lapierre, C., Leroueil, S., Locat, J. 1990Mercury intrusion and permeability of Louisville clayCan. Geotech. J.27761773CrossRefGoogle Scholar
  19. Penumadu, D., Dean, J. 2000Compressibility effect in evaluating the pore-size distribution of Kaolin clay using mercury intrusion porosimetryCan. Geotech. J.37393405CrossRefGoogle Scholar
  20. Richards, R.A. 1935Capillary conduction of liquids through porous mediumPhysics1318333CrossRefGoogle Scholar
  21. Simms, P.H., Yanful, E.K. 2001Measurement and estimation of pore shrinkage and pore distribution in a clayey till during soil-water characteristic curve testsCan. Geotech. J.38741754CrossRefGoogle Scholar
  22. Simms, P.H., Yanful, E.K. 2002Predicting soil-water characteristic curves of compacted plastic soils from measured pore-size distributionGeotechnique52269278CrossRefGoogle Scholar
  23. Tamari, S. 1984Relation between pore-space and hydraulic properties in compacted beds of silty-loam aggregatesSoil Technol.75773CrossRefGoogle Scholar
  24. Tuncay, K., Corapcioglu, M.Y. 1995Effective stress principle for saturated fractured porous mediaWater Resour. Res.3131033106CrossRefGoogle Scholar
  25. Valliappan, S., Khalili, N. 1990Flow through fissured porous media with deformable matrixInt. J. Neumer. Meth. Eng.2910791094CrossRefGoogle Scholar
  26. Vogel, H.J., Roth, K. 1998A new approach for determining effective soil hydraulic functionsEur. J. Soil Sci.49547556CrossRefGoogle Scholar
  27. Wang, H.F., Berryman, J.G. 1996On constitutive equations and effective stress principles for deformable, double-porosity mediaWater Resour. Res.3236213622CrossRefGoogle Scholar
  28. Warren J.R. and Root P.J. (1963). The behaviour of naturally fractured reservoirs. Soc. of Petrol. Eng. J. 245–255Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Azad Koliji
    • 1
  • Lyesse Laloui
    • 1
    Email author
  • Olivier Cusinier
    • 1
    • 2
  • Laurent Vulliet
    • 1
  1. 1.Laboratoire de mécanique des sols (LMS)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Laboratoire Environnement, Géomécanique & OuvragesEcole Nationale Supérieure de Géologie-INPLNancyFrance

Personalised recommendations