Transport in Porous Media

, Volume 61, Issue 1, pp 93–107

Role of pH in Electro-Osmosis: Experimental Study on NaCl–Water Saturated Kaolinite

  • Karim Beddiar
  • Teddy Fen-Chong
  • André Dupas
  • Yves Berthaud
  • Patrick Dangla
Article

Abstract

Electro-osmosis experiments were conducted on rigid cylindrical samples containing 0.01 M NaCl–water saturated Speswhite kaolinite. It is experimentally found that the electro-osmotic permeability is pH-dependent. It is also experimentally found that time and spatial variations of the sample pH and of the pore water pressure correlate. This is qualitatively confirmed by a simple analysis that couples the electro-osmotic and hydraulic flows through the pH-dependent electro-osmotic permeability. However quantitative agreement between the experimental and numerical values of the pore water pressure is not obtained throughout the whole sample. This suggests that the hydraulic permeability may also depend on the pH.

Keywords

electro-osmosis electrokinetic physico-chemical couplings pore pressure pH kaolinite hydraulic permeability electro-osmotic permeability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acar, Y., gale, R., Hamed, J., Putnam, G. 1990Acid/base distributions in electrokinetic soil processingTransportation Res. Rec.12882334Google Scholar
  2. Alshawabkeh, A., Acar, Y. 1992Removal of contaminants from soils by electrokinetics: a theoretical treatiseJ. Environ. Sci. Health A2718351861Google Scholar
  3. Alshawabkeh, A., Alcar, Y. 1996Electrokinetic remediation. II: theoretical modelJ. Geotech. Eng.122186196Google Scholar
  4. Azzam, A., Oey, W. 2001The utilization of electrokinetics in geotechnical and environmental engineeringTransport in Porous Media42293314Google Scholar
  5. Beddiar K. (2001). Sur certains aspects des couplages dans les milieux poreux électrisés. Application á l’électro-osmose dans les argiles. Ph.D. thesis, École Nationale des Ponts & Chaussées, 6-8 avenue Blaise Pascal - Cité Descartes - Champs-sur-Marne - 77455 Marne-la-Vallée, France.Google Scholar
  6. Beddiar K., Berthaud Y., Dupas A. (2000). Thermo-hydro-electro-mechanical coupling. Application to electro-osmosis in porous media. in: Proc. of the 20th International Congress of Theoretical and Applied MechanicsGoogle Scholar
  7. Bowen, W., Jacob, P. 1986Electro-osmosis and the determination of zeta potential: the effect of particle concentrationJ. Colloid Interface Sci.111223229Google Scholar
  8. Casagrande, L. 1949Electro-osmosis in soilsGéotechnique1159177Google Scholar
  9. Coelho, D., Shapiro, M., Thovert, J., Adler, P. 1996Electroosmotic phenomena in porous mediaJ. Colloid Interface Sci.181169190Google Scholar
  10. Coussy, O. 2004PoromechanicsJohn Wiley & SonsNYGoogle Scholar
  11. Esrig, M. 1968Pore pressures, consolidation and electrokineticsJ. Soil Mech. Found. Division, ASCE94899921Google Scholar
  12. Eykholt, G. 1992Driving and complicating features of the electrokinetic treatment of contaminated soilsUniversity of TexasAustinPh.D. thesisGoogle Scholar
  13. Garnier, J. 1984Modélisation par centrifugeuse: note sur la préparation d’argile reconstituéeRapport Interne du Laboratoire Central des Ponts & ChausséesParisGoogle Scholar
  14. Gray, D. 1960Prevention of moisture rise in capillary systems by electrical short circuitingNature223371374Google Scholar
  15. Gray, D., Mitchell, J. 1967Fundamental aspects of electro-osmosis in soilsJ. Mech. Found. Division ASCE93209236Google Scholar
  16. Huyghe, J., Janssen, J. 1999Thermo-chemo-electro-mechanical formulation of saturated charged porous solidsTransport in Porous Media34129141Google Scholar
  17. Lorenz, P. 1967Surface conductance and electrokinetic properties of kaolinite bedsClays Clay miner17223231Google Scholar
  18. Mise T. (1961). Electro-osmotic dewatering of soil and distribution of the pore water pressure, in: 15th International Conference on Soil Mechanics and Foundation Engineering, pp. 247–255.Google Scholar
  19. Mitchell, J. 1993Fundamentals of Soil Behavior2Wiley InterscienceNYGoogle Scholar
  20. Reuss, F.F. 1809Sur un nouvel effet de l’électricité galvaniqueMémoires de la Société Impériale des Naturalistes de Moscou2327337Google Scholar
  21. Tran, N. 1977Un nouvel essai d’identification des sols: léssai au bleu de méthyléneBulletin de Liaison du LCPC88136137Google Scholar
  22. Vidal, C., Dewel, G., Brockmans, P. 1994Au-delá de l’équilibreHermannparisGoogle Scholar
  23. Yeung, Y. 1994Effects of electro-kinetic coupling on the measurement of hydraulic conductivityHydraulic Cond. Waste Contam. Transport Soils, ASTM STP1142569585Google Scholar
  24. Yeung, Y., Mitchell, J. 1993Coupled fluid, electrical and chemical flow in soilsGéotechnique43121134Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Karim Beddiar
    • 1
    • 2
  • Teddy Fen-Chong
    • 1
  • André Dupas
    • 1
    • 3
  • Yves Berthaud
    • 1
    • 4
  • Patrick Dangla
    • 1
  1. 1.Institut NavierLMSGCChamps-sur-MarneFrance
  2. 2.École d’Ingénieurs du CESICentre de BagneuxBagneuxFrance
  3. 3.Institut NavierLAMIMarne-la-ValléeFrance
  4. 4.LMT (UMR 8535 ENS Cachan/Université Paris VI/CNRS) 61 avenue Président WilsonCachanFrance

Personalised recommendations