Advertisement

Transport in Porous Media

, Volume 58, Issue 3, pp 315–338 | Cite as

1-D Modeling of Hydrate Depressurization in Porous Media

  • X. Sun
  • N. Nanchary
  • K. K. Mohanty
Article

Abstract

A thermal, three-phase, one-dimensional numerical model is developed to simulate two regimes of gas production from sediments containing methane hydrates by depressurization: the dissociation-controlled regime and the flow-controlled regime. A parameter namely dissociation-flow time-scale ratio, Rτ, is defined and employed to identify the two regimes. The numerical model uses a finite-difference scheme; it is implicit in water and gas saturations, pressure and temperature, and explicit in hydrate saturation. The model shows that laboratory-scale experiments are often dissociation-controlled, but the field-scale processes are typically flow-controlled. Gas production from a linear reservoir is more sensitive to the heat transfer coefficient with the surrounding than the longitudinal heat conduction coefficient, in 1-D simulations. Gas production is not very sensitive to the well temperature boundary condition. This model can be used to fit laboratory-scale experimental data, but the dissociation rate constant, the multiphase flow parameters and the heat transfer parameters are uncertain and should be measured experimentally.

Keywords

hydrate reservoir depressurization modeling heat transfer methane hydrates gas production 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amyx, J. W., Bass, D. M., Whiting, R. L. 1960Petroleum Reservoir Engineering-Physical PropertiesMcGraw-HillNew YorkGoogle Scholar
  2. Clarke, M., Bishnoi, P. R. 2000Determination of the intrinsic rate of ethane gas hydrate decompositionChem. Eng. Sci5548694883Google Scholar
  3. Clarke, M., Bishnoi, P. R. 2001Determination of the active energy and intrinsic rate constant of methane gas hydrate decompositionCan. J. of Chem. Eng79143147Google Scholar
  4. Ji, C., Ahmadi, G., Smith, D. H. 2001Natural gas production from hydrate decomposition by depressurizationChem. Eng. Sci5658015814Google Scholar
  5. Kim, H. C., Bishnoi, P. R., Heidemann, R. A., Rizvi, S. S. H. 1987Kinetics of methane hydrate dissociationChem. Eng. Sci4216451653Google Scholar
  6. Kvenvolden, K. A., Carlson, P. R., Threlkeld, C. N. 1993Possible connection between two Alaskan catastrophes occurring 25 years apart (1964 and 1989)Geology21813816Google Scholar
  7. Makogan, Y. F. 1997Hydrates of hydrocarbonsPennWell BooksTulsa, OklahomaGoogle Scholar
  8. Makogon, Y. F. and Holditch, S. A.: 2001, Experiments illustrate hydrate morphology and kinetics, Gas and Oil J. 45–50.Google Scholar
  9. Moniz, E. J., Kenderdine, M. A. 2002Meeting energy challenges: technology and policyPhysics Today554046Google Scholar
  10. Moridis, G. J.: 2002, Numerical studies of gas production from methane hydrates, SPE 60693, proc. SPE Gas Tech. Symposium, Calgary, April 30–May 2.Google Scholar
  11. Nozad, I., Carbonell, R. G., Whitaker, S. 1985Heat conduction in multiphase systems. I. Theory and experiment for two-phase systemsChem. Eng. Sci40843855Google Scholar
  12. Selim, M. S., Sloan, E. D. 1989Heat and mass transfer during the dissociation of hydrate in porous mediaAIChE J3510491052Google Scholar
  13. Skov, A. M. 2003World energy beyond 2050J. of Petroleum Technol553437Google Scholar
  14. Sloan, E. D. 1998Clathrate hydrates of natural gases2Marcel DekkerNew YorkGoogle Scholar
  15. Stern, L. A., Kirby, S. H., Durham, W. B. 1996Peculiarities of methane clathrate hydrate formation and solid-state deformation, including possible superheating of water iceScience27318431848Google Scholar
  16. Tester, J. W. 1997Thermodynamics and Its Applications3Prentice HallNew JerseyGoogle Scholar
  17. Tsypkin, G. G. 1991Effect of liquid phase mobility on gas hydrate dissociation in reservoirsJ of Fluid and Gas Mechanics4105114Google Scholar
  18. Wilder, J. W., Smith, D. H. 2002Dependencies of clathrate hydrate dissociation fugacities on the inverse temperature and inverse pore radiusInd. Eng. Chem. Res4128192825Google Scholar
  19. Yousif, M. H., Abass, H. H., Selim, M. S., Sloan, E. D. 1991Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous mediaSPE Res. Eng66976Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • X. Sun
    • 1
  • N. Nanchary
    • 1
  • K. K. Mohanty
    • 1
  1. 1.Department of Chemical EngineeringUniversity of HoustonHoustonUSA

Personalised recommendations