Real-Time Systems

, Volume 49, Issue 2, pp 171–218 | Cite as

Multiprocessor schedulability of arbitrary-deadline sporadic tasks: complexity and antichain algorithm

  • Gilles Geeraerts
  • Joël Goossens
  • Markus Lindström
Article

Abstract

Baker and Cirinei (Lecture Notes in Computer Science, vol. 4878, Springer, pp. 62–75, 2007) have introduced an exact but naive algorithm, that consists in solving a state reachability problem in a finite automaton, to check whether a set of sporadic hard real-time tasks is schedulable on an identical multiprocessor platform. However, this algorithm suffers from poor performance due to the exponential size of the automaton relative to the size of the task set. In this paper, we build on the work of Baker and Cirinei, and rely on their formalism to characterise the complexity of this problem. We prove that it is PSpace-complete. In order to obtain an algorithm that is applicable in practice to systems of realistic sizes, we successfully apply techniques developed by the formal verification community, specifically antichain techniques (Doyen and Raskin in Lecture Notes in Computer Science, vol. 6015, Springer, pp. 2–22, 2010) to this scheduling problem. For that purpose, we define and prove the correctness of a simulation relation on Baker and Cirinei’s automaton. We show that our improved algorithm yields dramatically improved performance for the schedulability test and opens for many further improvements. This work is an extended and revised version of a previous conference paper by the same authors (Lindström et al., Proceedings of the 19th International Conference on Real-Time and Network Systems (RTNS 2011), pp. 25–34, 2011).

Keywords

Hard real-time scheduling Formal methods Automata theory Sporadic tasks Exact schedulability test Multiprocessor scheduling Complexity 

References

  1. Abdeddaïm Y, Maler O (2002) Preemptive job-shop scheduling using stopwatch automata. In: AIPS-02 workshop on planning via model-checking, Toulouse, France, pp 7–13 Google Scholar
  2. Baker TP, Baruah SK (2007) Schedulability analysis of multiprocessor sporadic task systems. In: Lee I, Leung JYT, Son S (eds) Handbook of real-time and embedded systems. Chapman & Hall/CRC Press, London/Boca Raton Google Scholar
  3. Baker TP, Cirinei M (2007) Brute-force determination of multiprocessor schedulability for sets of sporadic hard-deadline tasks. In: Tovar E, Tsigas P, Fouchal H (eds) Principles of distributed systems, 11th international conference, OPODIS 2007, Guadeloupe, French West Indies, December 17–20, 2007. Lecture notes in computer science, vol 4878. Springer, Berlin, pp 62–75 Google Scholar
  4. Baruah SK, Fisher N (2007) Global deadline-monotonic scheduling of arbitrary-deadline sporadic task systems. In: Tovar E, Tsigas P, Fouchal H (eds) Principles of distributed systems, 11th international conference, OPODIS 2007, Guadeloupe, French West Indies, December 17–20, 2007. Lecture notes in computer science, vol 4878. Springer, Berlin, pp 204–216 Google Scholar
  5. Bertogna M, Baruah SK (2011) Tests for global EDF schedulability analysis. J Syst Archit, Embed Syst Des 57(5):487–497 CrossRefGoogle Scholar
  6. Bonifaci V, Marchetti-Spaccamela A (2010) Feasibility analysis of sporadic real-time multiprocessor task systems. In: de Berg M, Meyer U (eds) ESA (2). Lecture notes in computer science, vol 6347. Springer, Berlin, pp 230–241 Google Scholar
  7. Bryant RE (1992) Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Comput Surv 24(3):293–318 CrossRefGoogle Scholar
  8. Cassez F (2011) Timed games for computing WCET for pipelined processors with caches. In: 11th int conf on application of concurrency to system design (ACSD’2011). IEEE Computer Society, Los Alamitos, pp 195–204 CrossRefGoogle Scholar
  9. De Wulf M, Doyen L, Henzinger TA, Raskin JF (2006) Antichains: a new algorithm for checking universality of finite automata. In: Ball T, Jones RB (eds) CAV. Lecture notes in computer science, vol 4144. Springer, Berlin, pp 17–30 Google Scholar
  10. Delzanno G, Raskin JF, Van Begin L (2004) Covering sharing trees: a compact data structure for parameterized verification. Int J Softw Tools Technol Transf 5(2–3):268–297 CrossRefGoogle Scholar
  11. Doyen L, Raskin JF (2010) Antichain algorithms for finite automata. In: Esparza J, Majumdar R (eds) TACAS. Lecture notes in computer science, vol 6015. Springer, Berlin, pp 2–22 Google Scholar
  12. Fersman E, Krcal P, Pettersson P, Yi W (2007) Task automata: schedulability, decidability and undecidability. Inf Comput 205(8):1149–1172 MathSciNetMATHCrossRefGoogle Scholar
  13. Filiot E, Jin N, Raskin JF (2009) An antichain algorithm for LTL realizability. In: CAV. Lecture notes in computer science, vol 5643. Springer, Berlin, pp 263–277 Google Scholar
  14. Garey MR, Johnson DS (1990) Computers and intractability; a guide to the theory of NP-completeness. Freeman, New York Google Scholar
  15. Goossens J, Funk S (2010) A note on task-parallelism upon multiprocessors. In: Fisher N, Davis R (eds) RTSOPS 2010: 1st international real-time scheduling open problems seminar, pp 18–19 Google Scholar
  16. Goossens J, Funk S, Baruah SK (2002) EDF scheduling on multiprocessor platforms: some (perhaps) counterintuitive observations. In: Proceedings of the eighth international conference on real-time computing systems and applications (RTCSA), Tokyo, Japan, pp 321–330 Google Scholar
  17. Goossens J, Funk S, Baruah SK (2003) Priority-driven scheduling of periodic task systems on multiprocessors. Real-Time Syst 25(2–3):187–205 MATHCrossRefGoogle Scholar
  18. Guan N, Gu Z, Deng Q, Gao S, Yu G (2007) Exact schedulability analysis for static-priority global multiprocessor scheduling using model-checking. In: Obermaisser R, Nah Y, Puschner PP, Rammig FJ (eds) SEUS. Lecture notes in computer science, vol 4761. Springer, Berlin, pp 263–272 Google Scholar
  19. Guan N, Gu Z, Lv M, Deng Q, Yu G (2008) Schedulability analysis of global fixed-priority or EDF multiprocessor scheduling with symbolic model-checking. In: ISORC. IEEE Computer Society, Los Alamitos, pp 556–560 Google Scholar
  20. Henzinger MR, Henzinger TA, Kopke PW (1995) Computing simulations on finite and infinite graphs. In: FOCS, pp 453–462 Google Scholar
  21. Lindström M, Geeraerts G, Goossens J (2011) A faster exact multiprocessor schedulability test for sporadic tasks. In: Proceedings of the 19th international conference on real-time and network systems (RTNS 2011), September 29–30, Nantes, France, pp 25–34 Google Scholar
  22. Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard-real-time environment. J ACM 20(1):46–61 MathSciNetMATHCrossRefGoogle Scholar
  23. Meyer AR, Stockmeyer LJ (1972) The equivalence problem for regular expressions with squaring requires exponential space. In: Proceedings of the 13th annual symposium on switching and automata theory (SWAT 1972). IEEE Computer Society, Washington, pp 125–129. doi:10.1109/SWAT.1972.29. http://dl.acm.org/citation.cfm?id=1437899.1438639. CrossRefGoogle Scholar
  24. Sipser M (1996) Introduction to the theory of computation, 1st edn. International Thomson Publishing, Washington Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Gilles Geeraerts
    • 1
  • Joël Goossens
    • 1
  • Markus Lindström
    • 1
  1. 1.Département d’Informatique, Faculté des SciencesUniversité libre de BruxellesBruxellesBelgium

Personalised recommendations