Real-Time Systems

, Volume 37, Issue 2, pp 99–122 | Cite as

Timing predictability of cache replacement policies

  • Jan ReinekeEmail author
  • Daniel Grund
  • Christoph Berg
  • Reinhard Wilhelm


Hard real-time systems must obey strict timing constraints. Therefore, one needs to derive guarantees on the worst-case execution times of a system’s tasks. In this context, predictable behavior of system components is crucial for the derivation of tight and thus useful bounds. This paper presents results about the predictability of common cache replacement policies. To this end, we introduce three metrics, evict, fill, and mls that capture aspects of cache-state predictability. A thorough analysis of the LRU, FIFO, MRU, and PLRU policies yields the respective values under these metrics. To the best of our knowledge, this work presents the first quantitative, analytical results for the predictability of replacement policies. Our results support empirical evidence in static cache analysis.


Predictability Timing analysis Cache analysis Cache replacement policies Hard real-time systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Zoubi H, Milenkovic A, Milenkovic M (2004) Performance evaluation of cache replacement policies for the SPEC CPU2000 benchmark suite. In: ACM-SE 42: proceedings of the 42nd annual Southeast regional conference, New York, NY, USA. ACM Press, New York, pp 267–272 CrossRefGoogle Scholar
  2. Belady L (1966) A study of replacement algorithms for a virtual storage computer. IBM Syst J 5:78–101 CrossRefGoogle Scholar
  3. Ferdinand C, Wilhelm R (1999) Efficient and precise cache behavior prediction for real-time systems. Real-Time Syst 17(2–3):131–181 CrossRefGoogle Scholar
  4. Freescale Semiconductor Inc (2002) MPC750 RISC Microprocessor User Manual, Section 3.5.1.
  5. Heckmann R, Langenbach M, Thesing S, Wilhelm R (2003) The influence of processor architecture on the design and the results of WCET tools. Proc IEEE 91(7):1038–1054 CrossRefGoogle Scholar
  6. Langenbach M, Thesing S, Heckmann R (2002) Pipeline modeling for timing analysis. In: Proceedings of the static analyses symposium (SAS), vol 2477, Madrid, Spain Google Scholar
  7. Malamy A, Patel R, Hayes N (October 1994) Methods and apparatus for implementing a pseudo-LRU cache memory replacement scheme with a locking feature. United States Patent 5029072 Google Scholar
  8. Sleator DD, Tarjan RE (1985) Amortized efficiency of list update and paging rules. Commun ACM 28(2):202–208 CrossRefMathSciNetGoogle Scholar
  9. Thesing S (2004) Safe and precise WCET determinations by abstract interpretation of pipeline models. PhD thesis, Saarland University Google Scholar
  10. Thiele L, Wilhelm R (2004) Design for timing predictability. Real-Time Syst 28(2–3):157–177 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jan Reineke
    • 1
    Email author
  • Daniel Grund
    • 1
  • Christoph Berg
    • 1
  • Reinhard Wilhelm
    • 1
  1. 1.Universität des SaarlandesSaarbrückenGermany

Personalised recommendations