Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A MADS-box transcription factor from grapevine, VvMADS45, influences seed development

  • 53 Accesses

Abstract

Grape is one of the most economically important fruits worldwide, and seedless fruit is a main target in grape breeding. The MADS-box genes encode a large family of transcription factors in higher plants, and serve various developmental roles including flower, fruit and seed development. However, little is known about function of MADS-box genes in grapevine, especially related to seed development. Here, we characterized a role for the grapevine MADS-box gene, VvMADS45, in seed development. Heterologous expression of VvMADS45 (VvMADS45-OE) in tomato resulted in larger flowers, fruit and seeds. In contrast, disruption of a tomato homolog of VvMADS45 (SlAGL104-KO) resulted in smaller flowers, fruit and seeds. In addition, both VvMADS45-OE and SlAGL104-KO lines produced fewer seeds than control. The fraction of pollen grains that appeared abnormal or failed to rehydrate was greater in VvMADS45-OE lines than in non-transgenic control plants, while relatively few abnormal pollen grains were formed in SlAGL104-KO lines. Expression of several genes related to flower, fruit and seed development was altered in both VvMADS45-OE and SlAGL104-KO lines. These results revealed that VvMADS45 participates in flower, fruit and seed development, especially seed development, which may provide new insight into the genetic basis of seedlessness in grapes.

Key Message

Heterologous expression of grapevine VvMADS45 in tomato increases the size of flowers, fruit and seeds, and decreases seed number, while disruption of the tomato homolog of this gene, SlAGL104, decreases the size of the flowers, fruit, and seeds, as well as seed number.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Adamczyk BJ, Fernandez DE (2009) MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiol 149(4):1713–1723

  2. Bahaji A, Almagro G, Ezquer I, Gámez-Arcas S, Sánchez-López ÁM, Muñoz FJ, Barrio RJ, Sampedro MC, De Diego N, Spíchal L, Doležal K, Tarkowská D, Caporali E, Mendes MA, Baroja-Fernández E, Pozueta-Romero J (2018) Plastidial phosphoglucose isomerase is an important determinant of seed yield through its involvement in gibberellin-mediated reproductive development and storage reserve biosynthesis in Arabidopsis. Plant Cell 30:2082–2098

  3. Balanza V, Martinez-Fernandez I, Sato S, Yanofsky MF, Kaufmann K, Angenent GC, Bemer M, Ferrandiz C (2018) Genetic control of meristem arrest and life span in Arabidopsis by a FRUITFULL-APETALA2 pathway. Nat Commun 9(1):565

  4. Cai Q, Yuan Z, Chen M, Yin C, Luo Z, Zhao X, Liang W, Hu J, Zhang D (2014) Jasmonic acid regulates spikelet development in rice. Nat Commun 5:3476

  5. Chen H, Niklas KJ, Yang D, Sun S (2009) The effect of twig architecture and seed number on seed size variation in subtropical woody species. New Phytol 183(4):1212–1221

  6. Cheng CX, Jiao C, Singer SD, Gao M, Xu XZ, Zhou YM, Li Z, Fei Z, Wang YJ, Wang XP (2015) Gibberellin-induced changes in the transcriptome of grapevine (Vitis labrusca × V. vinifera) cv. Kyoho flowers. BMC Genomics 16:128

  7. Chi Y, Wang T, Xu G, Yang H, Zeng X, Shen Y, Yu D, Huang F (2017) GmAGL1, a MADS-box gene from soybean, is involved in floral organ identity and fruit dehiscence. Front Plant Sci 8:175

  8. Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

  9. Cui R, Han J, Zhao S, Su K, Wu F, Du X, Xu Q, Chong K, Theissen G, Meng Z (2010) Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J 61(5):767–781

  10. Czerednik A, Busscher M, Bielen BA, Wolters-Arts M, de Maagd RA, Angenent GC (2012) Regulation of tomato fruit pericarp development by an interplay between CDKB and CDKA1 cell cycle genes. J Exp Bot 63(7):2605–2617

  11. Edlund AF, Swanson R, Preuss D (2004) Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16(1):S84–S97

  12. Fernandez L, Chaib J, Martinez-Zapater JM, Thomas MR, Torregrosa L (2013) Mis-expression of a PISTILLATA-like MADS box gene prevents fruit development in grapevine. Plant J 73(6):918–928

  13. Gao X, Liang W, Yin C, Ji S, Wang H, Su X, Guo C, Kong H, Xue H, Zhang D (2010) The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiol 153(2):728–740

  14. Gimenez E, Dominguez E, Pineda B, Heredia A, Moreno V, Lozano R, Angosto T (2015) Transcriptional activity of the MADS box ARLEQUIN/TOMATO AGAMOUS-LIKE1 gene is required for cuticle development of tomato fruit. Plant Physiol 168(3):1036–1048

  15. Gimenez E, Castaneda L, Pineda B, Pan IL, Moreno V, Angosto T, Lozano R (2016) TOMATO AGAMOUS1 and ARLEQUIN/TOMATO AGAMOUS-LIKE1 MADS-box genes have redundant and divergent functions required for tomato reproductive development. Plant Mol Biol 91(4–5):513–531

  16. Gomez MD, Ventimilla D, Sacristan R, Perez-Amador MA (2016) Gibberellins regulate ovule integument development by interfering with the transcription factor ATS. Plant Physiol 172:2403–2415

  17. Gomez MD, Barro-Trastoy D, Escoms E, Saura-Sánchez M, Sánchez I, Briones-Moreno A, Vera-Sirera F, Carrera E, Ripoll JJ, Yanofsky MF, Lopez-Diaz I, Alonso JM, Perez-Amador MA (2018) Gibberellins negatively modulate ovule number in plants. Development 145:163865

  18. Heslop-Harrison J, Heslop-Harrison Y (1970) Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Stain Technol 45(3):115–120

  19. Higashiyama T, Yang WC (2017) Gametophytic pollen tube guidance: attractant peptides, gametic controls, and receptors. Plant Physiol 173(1):112–121

  20. Horiguchi G, Ferjani A, Fujikura U, Tsukaya H (2006) Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. J Plant Res 119(1):37–42

  21. Huang F, Xu G, Chi Y, Liu H, Xue Q, Zhao T, Gai J, Yu D (2014) A soybean MADS-box protein modulates floral organ numbers, petal identity and sterility. BMC Plant Biol 14:89

  22. Huang B, Routaboul JM, Liu M, Deng W, Maza E, Mila I, Hu G, Zouine M, Frasse P, Vrebalov JT, Giovannoni JJ, Li Z, van der Rest B, Bouzayen M (2017) Overexpression of the class D MADS-box gene Sl-AGL11 impacts fleshy tissue differentiation and structure in tomato fruits. J Exp Bot 68(17):4869–4884

  23. Huang L, Yin X, Sun X, Yang J, Rahman M, Chen Z, Wang X (2018) Expression of a grape VqSTS36-increased resistance to powdery mildew and osmotic stress in Arabidopsis but enhanced susceptibility to Botrytis cinerea in Arabidopsis and tomato. Int J Mol Sci 19(10):2985

  24. Ishiai S, Nakajima Y, Enoki S, Suzuki S (2016) Grape SISTER OF RAMOSA3 is a negative regulator of pedicel development of grape inflorescence. Plant Cell Tissue Org Cult 124:217–225

  25. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quétier F, Wincker P, French-Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

  26. Jofuku KD, Omidyar PK, Gee Z, Okamuro JK (2005) Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc Natl Acad Sci USA 102(8):3117–3122

  27. Kaufmann K, Melzer R, Theissen G (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347(2):183–198

  28. Kohlen W, Charnikhova T, Lammers M, Pollina T, Toth P, Haider I, Pozo MJ, de Maagd RA, Ruyter-Spira C, Bouwmeester HJ, Lopez-Raez JA (2012) The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol 196(2):535–547

  29. Ledbetter CA, Ramming DW (1989) Seedlessness in grapes. Hortic Rev 11:159–184

  30. Li J, Wang X, Wang X, Wang Y (2015) Embryo rescue technique and its applications for seedless breeding in grape. Plant Cell Tissue Org Cult 120:861–880

  31. Li Z, Liu G, Zhang J, Zhang S, Bao M (2017) Functional analysis of the promoters of B-class MADS-box genes in London plane tree and their application in genetic engineering of sterility. Plant Cell Tissue Org Cult 130:279–288

  32. Li XB, Shi SY, Tao QD, Tao YJ, Miao J, Peng XR, LiC YZF, Zhou Y, Liang GH (2019a) OsGASR9 positively regulates grain size and yield in rice (Oryza sativa). Plant Sci 286:17–27

  33. Li YD, Zhang SL, Dong RZ, Wang L, Yao J, van Nocker S, Wang XP (2019b) The grapevine homeobox gene VvHB58 influences seed and fruit development through multiple hormonal signaling pathways. BMC Plant Biol 19:523

  34. Liang Y, Liu Q, Wang X, Huang C, Xu G, Hey S, Lin HY, Li C, Xu D, Wu L, Wang C, Wu W, Xia J, Han X, Lu S, Lai J, Song W, Schnable PS, Tian F (2019) ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation. New Phytol 221(4):2335–2347

  35. Liu J, Tang X, Gao L, Gao Y, Li Y, Huang S, Sun X, Miao M, Zeng H, Tian X, Niu X, Zheng L, Giovannoni J, Xiao F, Liu Y (2012) A role of tomato UV-damaged DNA binding protein 1 (DDB1) in organ size control via an epigenetic manner. PLoS ONE 7(8):e42621

  36. Liu Y, Cui S, Wu F, Yan S, Lin X, Du X, Chong K, Schilling S, Theissen G, Meng Z (2013) Functional conservation of MIKC*-Type MADS box genes in Arabidopsis and rice pollen maturation. Plant Cell 25(4):1288–1303

  37. Liu J, Zhang J, Wang J, Zhang J, Miao H, Jia C, Wang Z, Xu B, Jin Z (2018) MuMADS1 and MaOFP1 regulate fruit quality in a tomato ovate mutant. Plant Biotech J 16(5):989–1001

  38. Ma H, DePamphilis C (2000) The ABCs of floral evolution. Cell 101(1):5–8

  39. Ma X, Liu YG (2016) CRISPR/Cas9-based multiplex genome editing in monocot and dicot plants. Curr Protoc Mol Biol 115:31–36

  40. Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu YG (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8(8):1274–1284

  41. Malabarba J, Buffon V, Mariath J, Gaeta ML, Dornelas MC, Margis-Pinheiro M, Pasquali G, Revers LF (2017) The MADS-box gene Agamous-like 11 is essential for seed morphogenesis in grapevine. J Exp Bot 68(7):1493–1506

  42. Mateos JL, Madrigal P, Tsuda K, Rawat V, Richter R, Romera-Branchat M, Fornara F, Schneeberger K, Krajewski P, Coupland G (2015) Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis. Genome Biol 16:31

  43. Matias-Hernandez L, Battaglia R, Galbiati F, Rubes M, Eichenberger C, Grossniklaus U, Kater MM, Colombo L (2010) VERDANDI is a direct target of the MADS domain ovule identity complex and affects embryo sac differentiation in Arabidopsis. Plant Cell 22(6):1702–1715

  44. Mejia N, Soto B, Guerrero M, Casanueva X, Houel C, Miccono ML, Ramos R, Le Cunff L, Boursiquot JM, Hinrichsen P, Adam-Blondon AF (2011) Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biol 11:57

  45. Mizukami Y (2001) A matter of size: developmental control of organ size in plants. Curr Opin Plant Biol 4(6):533–539

  46. Moriguchi R, Ohata K, Kanahama K, Takahashi H, Nishiyama M, Kanayama Y (2011) Suppression of telomere-binding protein gene expression represses seed and fruit development in tomato. J Plant Physiol 168(16):1927–1933

  47. Ocarez N, Mejia N (2016) Suppression of the D-class MADS-box AGL11 gene triggers seedlessness in fleshy fruits. Plant Cell Rep 35(1):239–254

  48. Ohto MA, Fischer RL, Goldberg RB, Nakamura K, Harada JJ (2005) Control of seed mass by APETALA2. Proc Natl Acad Sci USA 102(8):3123–3128

  49. Ohto MA, Floyd SK, Fischer RL, Goldberg RB, Harada JJ (2009) Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis. Sex Plant Reprod 22(4):277–289

  50. Palumbo F, Vannozzi A, Magon G, Lucchin M, Barcaccia G (2019) Genomics of flower identity in grapevine (Vitis vinifera L.). Front Plant Sci 10:316

  51. Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424(6944):85–88

  52. Powell AE, Lenhard M (2012) Control of organ size in plants. Curr Biol 22(9):R360–R367

  53. Pramono AA, Palupi ER, Siregar IZ, Kusmana C (2016) Characteristics of surian flower, fruit and seed productions (Toona sinensis (A. Juss.) M. Roem.)) in Sumedang. West Java. Trop Life Sci Res 27(1):77–91

  54. Prasad K, Zhang X, Tobon E, Ambrose BA (2010) The Arabidopsis B-sister MADS-box protein, GORDITA, represses fruit growth and contributes to integument development. Plant J 62(2):203–214

  55. Ramming DW (1990) The use of embryo culture in fruit breeding. Hortic Sci 25(4):393–398

  56. Royo C, Torres-Perez R, Mauri N, Diestro N, Cabezas JA, Marchal C, Lacombe T, Ibanez J, Tornel M, Carreno J, Martinez-Zapater JM, Carbonell-Bejerano P (2018) The major origin of seedless grapes is associated with a missense mutation in the MADS-box gene VviAGL11. Plant Physiol 177(3):1234–1253

  57. Shao SQ, Li BY, Zhang ZT, Zhou Y, Jiang J, Li XB (2010) Expression of a cotton MADS-box gene is regulated in anther development and in response to phytohormone signaling. J Genet Genomics 37(12):805–816

  58. Su LY, Audran C, Bouzayen M, Roustan JP, Chervin C (2015) The Aux/IAA, Sl-IAA17 regulates quality parameters over tomato fruit development. Plant Signal Behav 10(11):e1071001

  59. Sugimoto-Shirasu K, Roberts K (2003) “Big it up”: endoreduplication and cell-size control in plants. Curr Opin Plant Biol 6(6):544–553

  60. Suzuki H, Oshita E, Fujimori N, Nakajima Y, Kawagoe Y, Suzuki S (2015) Grape expansins, VvEXPA14 and VvEXPA18 promote cell expansion in transgenic Arabidopsis plant. Plant Cell Tissue Org Cult 120:1077–1085

  61. Verelst W, Twell D, de Folter S, Immink R, Saedler H, Munster T (2007) MADS-complexes regulate transcriptome dynamics during pollen maturation. Genome Biol 8(11):R249

  62. Vrebalov J, Pan IL, Arroyo AJ, McQuinn R, Chung M, Poole M, Rose J, Seymour G, Grandillo S, Giovannoni J, Irish VF (2009) Fleshy fruit expansion and ripening are regulated by the Tomato SHATTERPROOF gene TAGL1. Plant Cell 21(10):3041–3062

  63. Wang L, Yin X, Cheng C, Wang H, Guo R, Xu X, Zhao J, Zheng Y, Wang X (2015) Evolutionary and expression analysis of a MADS-box gene superfamily involved in ovule development of seeded and seedless grapevines. Mol Genet Genomics 290(3):825–846

  64. Wang L, Hu X, Jiao C, Li Z, Fei Z, Yan X, Liu C, Wang Y, Wang X (2016) Transcriptome analyses of seed development in grape hybrids reveals a possible mechanism influencing seed size. BMC Genomics 17(1):898

  65. Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78(2):203–209

  66. Wilhelmi LK, Preuss D (1997) Blazing new trails (pollen tube guidance in flowering plants). Plant Physiol 113(2):307–312

  67. Xiang L, Chen Y, Chen L, Fu X, Zhao K, Zhang J, Sun C (2018) B and E MADS-box genes determine the perianth formation in Cymbidium goeringii Rchb.f. Physiol Plant 162(3):353–369

  68. Xie X, Ma X, Zhu Q, Zeng D, Li G, Liu YG (2017) CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. Mol Plant 10(9):1246–1249

  69. Xu W, Bobet S, Le Gourrierec J, Grain D, De Vos D, Berger A, Salsac F, Kelemen Z, Boucherez J, Rolland A, Mouille G, Routaboul JM, Lepiniec L, Dubos C (2017) TRANSPARENT TESTA 16 and 15 act through different mechanisms to control proanthocyanidin accumulation in Arabidopsis testa. J Exp Bot 68(11):2859–2870

  70. Zhang D, Wengier D, Shuai B, Gui CP, Muschietti J, McCormick S, Tang WH (2008) The pollen receptor kinase LePRK2 mediates growth-promoting signals and positively regulates pollen germination and tube growth. Plant Physiol 148(3):1368–1379

  71. Zhang T, Zhao Y, Juntheikki I, Mouhu K, Broholm SK, Rijpkema AS, Kins L, Lan T, Albert VA, Teeri TH, Elomaa P (2017) Dissecting functions of SEPALLATA-like MADS box genes in patterning of the pseudanthial inflorescence of Gerbera hybrida. New Phytol 216(3):939–954

  72. Zhang H, Xu H, Feng M, Zhu Y (2018a) Suppression of OsMADS7 in rice endosperm stabilizes amylose content under high temperature stress. Plant Biotech J 16(1):18–26

  73. Zhang J, Hu Z, Wang Y, Yu X, Liao C, Zhu M, Chen G (2018b) Suppression of a tomato SEPALLATA MADS-box gene, SlCMB1, generates altered inflorescence architecture and enlarged sepals. Plant Sci 272:75–87

  74. Zhang J, Wang Y, Naeem M, Zhu M, Li J, Yu X, Hu Z, Chen G (2019) An AGAMOUS MADS-box protein, SlMBP3, regulates the speed of placenta liquefaction and controls seed formation in tomato. J Exp Bot 70(3):909–924

  75. Zhao J, Jiang L, Che G, Pan Y, Li Y, Hou Y, Zhao W, Zhong Y, Ding L, Yan S, Sun C, Liu R, Yan L, Wu T, Li XS, Weng Y, Zhang X (2019) A functional allele of CsFUL1 regulates fruit length through repressing CsSUP and inhibiting auxin transport in cucumber. Plant Cell 31(6):1289–1307

  76. Zheng Q, Perry SE (2014) Alterations in the transcriptome of soybean in response to enhanced somatic embryogenesis promoted by orthologs of Agamous-like15 and Agamous-like18. Plant Physiol 164(3):1365–1377

  77. Zhu P, Gu B, Li P, Shu X, Zhang X, Zhang J (2020) New cold-resistant, seedless grapes developed using embryo rescue and marker-assisted selection. Plant Cell Tissue Org Cult. https://doi.org/10.1007/s11240-019-01751-y

Download references

Acknowledgements

We thank Prof. Yaoguang Liu of South China Agricultural University for providing the pYLCRISPR/Cas9 system. This work was supported by the National Natural Science Foundation of China (U1603234), as well as the Program for Innovative Research Team of Grape Germplasm Resources and Breeding (2013KCT-25).

Author information

XPW and XMS designed experiments. XMS performed experiments. SLZ, XML, XHW, XMZ and ZL assisted with experiments. XMS and XPW wrote the manuscript. All authors approved the final manuscript.

Correspondence to Xiping Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Ming-Tsair Chan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 765 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Zhang, S., Li, X. et al. A MADS-box transcription factor from grapevine, VvMADS45, influences seed development. Plant Cell Tiss Organ Cult (2020). https://doi.org/10.1007/s11240-020-01771-z

Download citation

Keywords

  • Grape
  • VvMADS45
  • Seed development
  • CRISPR/Cas9
  • Functional analysis