Heterologous overexpression of Nothapodytes foetida strictosidine synthase enhances levels of anti-cancer compound camptothecin in Ophiorrhiza rugosa

  • Sudhir SinghEmail author
  • Suchita N. Kamble
  • Ramesh K. Satdive
  • Devanand P. Fulzele
Original Article


Nothapodytes foetida, an endangered tree of Indian origin, is a major source of the anti-cancer monoterpenoid indole alkaloid, camptothecin (CPT). Strictosidine synthase (STR) condenses tryptamine and secologanin to form strictosidine, a universal precursor of terpenoid indole alkaloids including CPT. We cloned full-length str cDNA with an open reading frame of 1059 bp from N. foetida (Nfstr) using a homology-based approach. Different tissues of N. foetida from in vitro grown cultures, as well as a mature tree, showed expression of STR, confirming the constitutive nature of the gene. In vitro tissues showed a positive correlation between STR expression and the CPT content, but tissues from wild-type mature plants did not show a similar pattern. Transgenic Ophiorrhiza rugosa plants overexpressing Nfstr showed 1.9-fold higher CPT than non-transformed plants. The results indicated that overexpression of Nfstr in target plants could improve the levels of CPT and may provide an alternative and sustainable source of camptothecin.

Key message

We report the full-length sequence and expression analysis of strictosidine synthase cDNA from Nothapodytes foetida (Nfstr). Further, the overexpression of Nfstr in Ophiorrhiza resulted in twofold enhancement in camptothecin levels.


Camptothecin Nothapodytes foetida Ophiorrhiza rugosa Strictosidine synthase Terpenoid indole alkaloid pathway 





Dry weight


Terpenoid indole alkaloid


Strictosidine synthase



Work communicated in the present manuscript is supported by Department of Atomic Energy, Government of India. Authors thank Head, NABTD for his encouragement and support.

Author contributions

SS conceived and designed the study. SS, SNK, and RKS performed the experiments and analyzed the data. SS, SNK, RKS, and DPF contributed inputs, wrote and critically reviewed the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11240_2020_1767_MOESM1_ESM.docx (251 kb)
Supplementary file1 (DOCX 251 kb)


  1. Aerts RJ, Van der Leer T, Van der Heijden R, Verpoorte R (1990) Developmental regulation of alkaloid production in Cinchona seedlings. J Plant Physiol 13:86–91CrossRefGoogle Scholar
  2. Aerts RJ, De Waal A, Pennings EJM, Verpoorte R (1992) The distribution of strictosidine synthase activity and alkaloids in Cinchona plants. Planta 183:536–541CrossRefGoogle Scholar
  3. Aerts RJ, Gisi D, De Carolis E, De Luca V, Baumann TW (1994) Methyl jasmonate vapour increases the developmentally controlled synthesis of alkaloids in Catharanthus and Cinchona seedlings. Plant J 5:635–643CrossRefGoogle Scholar
  4. Aiyama R, Nagai H, Nokata K, Shinohara C, Swada SA (1988) Camptothecin derivative from Nothapodytes foetida. Phytochemistry 27:3663–3664CrossRefGoogle Scholar
  5. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bernonville TD, Clastre M, Besseau S, Oudin A, Burlat V, Glévarec G, Lanoue A, Papon N, Giglioli-Guivarc’h N, St-Pierre B, Courdavault V (2015) Phytochemical genomics of the Madagascar periwinkle: unravelling the last twists of the alkaloid engine. Phytochemistry 113:9–23CrossRefGoogle Scholar
  7. Bodley AL, Cumming JN, Shapiro TA (1998) Effects of camptothecin, a topoisomerase I inhibitor, on Plasmodium falciparum. Biochem Pharmacol 55:709–711PubMedCrossRefGoogle Scholar
  8. Bustin SA, BenesV GJA, Hellemans J, Hugget J, Kubista M, Mueller R, Nolan T, Pfaffi MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622PubMedPubMedCentralCrossRefGoogle Scholar
  9. Canel C, Lopes-Cardoso MI, Whitmer S, van der Fits L, Pasquali G, van der Heijden R, Hoge JH, Verpoorte R (1998) Effect of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205:414–419PubMedCrossRefGoogle Scholar
  10. Cui L, Ni X, Ji Q, Teng X, Yang Y, Wu C, Zekria D, Zhang D, Kai G (2015) Co-overexpression of geraniol-10-hydroxylase and strictosidine synthase improves anti-cancer drug camptothecin accumulation in Ophiorrhiza pumila. Sci Rep 5:8227PubMedPubMedCentralCrossRefGoogle Scholar
  11. Deepthi S, Satheeshkumar K (2016) Enhanced camptothecin production induced by elicitors in the cell suspension cultures of Ophiorrhiza mungos Linn. Plant Cell Tissue Organ Cult 124:483–493CrossRefGoogle Scholar
  12. Dellaporta J, Wood JB, Hicks A (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 14:19–21CrossRefGoogle Scholar
  13. Fulzele DP, Sadive RS (2003) Somatic embryogenesis, plant regeneration and the evaluation of camptothecin content in Nothapodytes foetida. Vitro Cell Dev Biol Plant 39:212–216CrossRefGoogle Scholar
  14. Fulzele DP, Satdive RK (2005) Distribution of anticancer drug camptothecin in Nothapodytes foetida. Fitoterapia 76:643–648PubMedCrossRefGoogle Scholar
  15. Fulzele DP, Satdive R, Kamble S, Singh S, Singh S (2015) Improvement of anticancer drug camptothecin production by gamma irradiation on callus cultures of Nothapodytes foetida. Int. J Pharma Res Allied Sci 4:19–27Google Scholar
  16. Horsch RB, Fry JE, Hoffman NL, Eichholtz D, Rogers SG, Fraley RTA (1985) Simple and general method of transferring genes into plants. Science 227:1229–1231CrossRefGoogle Scholar
  17. Huang HC, Sung PH, Do YY, Huang PL (2012) Differential expression and functional characterization of the NADPH cytochrome P450 reductase genes from Nothapodytes foetida. Plant Sci 190:16–23PubMedCrossRefPubMedCentralGoogle Scholar
  18. Isah T, Mujib A (2015) In vitro propagation and camptothecin production in Nothapodytes nimmoniana. Plant Cell Tissue Organ Cult 121:1–10CrossRefGoogle Scholar
  19. Kutchan TM, Hampp N, Lottspeich F, Beyreuther K, Zenk MH (1988) The cDNA clone for strictosidine synthase from Rauvolfia serpentine. DNA sequence determination and expression in Escherichia coli. FEBS Lett 237:40–44PubMedCrossRefPubMedCentralGoogle Scholar
  20. Lopez-Meyer M, Nessler CL, Mcknight TD (1994) Sites of accumulation of the antitumor alkaloid camptothecin in Camptotheca acuminate. Planta Med 60:558–560PubMedCrossRefGoogle Scholar
  21. Lu Y, Wang H, Wang W, Zhongying Q, Li L, Wang J, Zhou G, Kai G (2009) Molecular characterization and expression analysis of a new cDNA encoding strictosidine synthase from Ophiorrhiza japonica. Mol Biol Rep 36:1845–1852PubMedCrossRefGoogle Scholar
  22. Manjunatha BL, Singh HR, Ravikanth G, Nataraja KN, Shankar R, Kumar S, Uma Shaanker R (2016) Transcriptome analysis of stem wood of Nothapodytes nimmoniana (Graham) Mabb. Identifies genes associated with biosynthesis of camptothecin, an anti-carcinogenic molecule. J Biosci 41(1):119–131PubMedCrossRefGoogle Scholar
  23. Martin KP, Zhang CL, Hembrom ME, Slater A, Madassery J (2008) Adventitious root induction in Ophiorrhiza prostrata: a tool for the production of camptothecin (an anticancer drug) and rapid propagation. Plant Biotechnol Rep 2:163–169CrossRefGoogle Scholar
  24. McKnight TD, Roessner CA, Devagupta R, Scott AI, Nessler CL (1990) Nucleotide sequence of a cDNA encoding the vacuolar protein strictosidine synthase from Catharanthus roseus. Nucleic Acids Res 18:4939PubMedPubMedCentralCrossRefGoogle Scholar
  25. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  26. Namdeo AG, Sharma A (2012) HPLC analysis of camptothecin content in various parts of Nothapodytes foetida collected on different periods. Asian Pac J Trop Biomed 2:389–393PubMedPubMedCentralCrossRefGoogle Scholar
  27. Pan Q, Wang Q, Yuan F, Xing S, Zhao J, Choi YH, Verpoorte R, Tian Y, Wang G, Tang K (2012) Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics. PLoS ONE 7(8):e43038PubMedPubMedCentralCrossRefGoogle Scholar
  28. Priel E, Showwalter SD, Blair DG (1991) Inhibition of human immunodeficiency virus (HIV-1) replication in vitro by noncytotoxic doses of camptothecin, a topoisomerase I inhibitor. AIDS Res Hum Retrovir 7(1):65–72PubMedCrossRefGoogle Scholar
  29. Rather GA, Sharma A, Pandith SA, Kaul V, Nandi U, Misra P, Lattoo SK (2018) De novo transcriptomic analyses reveals putative pathway genes involved in biosynthesis and regulation of camptothecin in Nothapodytes nimmoniana (Graham) Mabb. Plant Mol Biol 96:197–215PubMedCrossRefGoogle Scholar
  30. Roja G (2008) Micropropagation and production of camptothecin from in vitro plants of Ophiorrhiza rugosa var. decumbens. Nat Prod Res 22:1017–1023PubMedCrossRefGoogle Scholar
  31. Ruan J, Zhang J, Li M, Zhu Y, Sun L, Jin H, Su H, Xu M (2014) Dependence of UV-B-induced camptothecin production on nitrate reductase-mediated nitric oxide signaling in Camptotheca acuminata suspension cell cultures. Plant Cell Tissue Organ Cult 118:269–278CrossRefGoogle Scholar
  32. Sakuta M, Komamine A (1987) Cell growth and accumulation of secondary metabolites. In: Constabel F, Vasil IK (eds) Cell culture and somatic cell genetics of plats. Cell culture in phytochemistry, vol 4. Academic Press, San Diego, pp 49–76Google Scholar
  33. Shivaprakash KN, Ramesha BT, Shaanker RU, Dayanandan S, Ravikanth G (2014) Genetic structure, diversity and long term viability of a medicinal plant, Nothapodytes nimmoniana Graham. (Icacinaceae), in protected and non-protected areas in the Western Ghats biodiversity hotspot. PLoS ONE 9:e112769PubMedPubMedCentralCrossRefGoogle Scholar
  34. Sibéril Y, Benhamron S, Memelink J, Giglioli-Guivarc’h N, Thiersault M, Boissoni B, Doireau P, Gantet P (2001) Catharanthus roseus G-box binding factors 1 and 2 act as repressors of strictosidine synthase gene expression in cell cultures. Plant Mol Biol 45:477–488PubMedCrossRefGoogle Scholar
  35. Singh S, Premsagar K, Ramachandran V, Eapen S (2011) Transgenic Nicotiana tabacum plants expressing a fungal copper transporter gene show enhanced acquisition of copper. Plant Cell Rep 30:1929–1938PubMedCrossRefGoogle Scholar
  36. Stöckigt J, Ruppert M (1999) Strictosidine—the biosynthetic key to monoterpenoid indole alkaloid. In: Barton DHR, Nakanishi K, Meth-Cohn O, Kelly JW (eds) Comprehensive natural products chemistry: amino acids, peptides, porphyrins and alkaloids, vol 4. Elsevier, Amsterdam, pp 109–139CrossRefGoogle Scholar
  37. Stöckigt J, Zenx MH (1977) Strictosidine (Isovincoside): the key intermediate in the biosynthesis of monoterpenoid indole alkaloids. J Chem Soc Chem Commun. CrossRefGoogle Scholar
  38. Sun Y, Luo H, Sun YLC, Song J, Niu Y, Zhu Y, Dong L, Lv A, Tramontano E, Chen S (2011) Pyrosequencing of Camptotheca acuminata transcriptome reveals putative genes involved in camptothecin biosynthesis and transport. BMC Genom 12:533CrossRefGoogle Scholar
  39. Tamura K, Stecher G, Peterson D, Filipski A, Sudhir Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedPubMedCentralCrossRefGoogle Scholar
  40. Uma Shaanker R, Ramesha BT, Ravikanth G, Gunaga R, Vasudeva R, Ganeshaiah KN (2008) Chemical profiling of Nothapodytes nimmoniana for camptothecin, an important anticancer alkaloid: toward the development of a sustainable production system. In: Ramawat KG, Merillon JM (eds) Bioactive molecules and medicinal plants. Springer, London, pp 197–213CrossRefGoogle Scholar
  41. Venditto VJ, Simanek EE (2010) Cancer therapies utilizing the camptothecin: a review of the in vivo literature. Mol Pharm 7:307–349PubMedPubMedCentralCrossRefGoogle Scholar
  42. Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AT, Sim GA (1966) Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloid leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88(16):3888–3890CrossRefGoogle Scholar
  43. Yamazaki Y, Urano A, Sudo H, Kitajima M, Takayama H, Yamazaki M, Aimi N, Saito K (2003) Metabolite profiling of alkaloids and strictosidine synthase activity in camptothecin producing plants. Phytochemistry 62:461–470PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.Plant Biotechnology & Secondary Metabolites Section, Nuclear Agriculture & Biotechnology DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations