Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Salinity modulates growth, morphology, and essential oil profile in Lippia alba L. (Verbenaceae) grown in vitro

  • 68 Accesses

Abstract

Soil salinity is one of the most relevant abiotic factors affecting global crop productivity. It also influences the composition of secondary metabolites in medicinal plant species. Lippia alba has great economic and industrial potential, which thanks to its essential oils rich in bioactive compounds and is an important plant in South American popular medicine. The objective of this work was to evaluate the effect of salt stress on the anatomy and growth of L. alba plants cultured in vitro, as well as the profile of essential oils and the expression of genes related to their synthesis. To this end, nodal segments were cultured in MS medium with the addition of 0, 30, 60, or 90 mM NaCl. After 40 days, growth, essential oil composition, and the expression of genes involved in mono- and sesquiterpenes biosynthesis were assayed. We found that salt stress affected primary metabolism of L. alba, impairing growth, development, and physiological activities. Alterations in secondary metabolism included an increase in linalool and a reduction in eucalyptol levels in plants under more severe salt stress (60 mM). Thus, while high concentrations of NaCl may compromise the physiology of L. alba plants, plasticity of this species under moderate salt stress allows growth and development without damage to the biosynthesis of mono- and sesquiterpenes.

Key Message

Moderate salt stress significantly alters the percentage of linalool and eucalyptol in plants of Lippia alba grown in vitro.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abraham E, Rigo G, Szekely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51:363–372. https://doi.org/10.1023/A:1022043000516

  2. Acosta-Motos J, Ortuño M, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco M, Hernandez J (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18. https://doi.org/10.3390/agronomy7010018

  3. Adams RP (1997) Identification of essential oil components by gas chromatography/mass spectroscopy. J Am Soc Mass Spectrom 6:671–672

  4. Aguiar JS, Costa MCCD, Nascimento SC, Sena KXFR (2008) Atividade antimicrobiana de Lippia alba (Mill.) N. E. Brown (Verbenaceae). Rev Bras Farmacogn 18:436–440. https://doi.org/10.1590/S0102-695X2008000300018

  5. Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720–1731. https://doi.org/10.4161/psb.6.11.17613

  6. Almeida DM, Oliveira MM, Saibo NJM (2017) Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Gen Mol Biol 40:326–345. https://doi.org/10.1590/1678-4685-gmb-2016-0106

  7. Almeida MC, Pina ES, Hernandes C, Zingaretti SM, Taleb-Contini SH, Salimena F, Slavov SN, Haddad SK, França SC, Pereira AMS, Bertoni BW (2018) Genetic diversity and chemical variability of Lippia spp. (Verbenaceae). BMC Res Notes 11:725. https://doi.org/10.1186/s13104-018-3839-y

  8. Amin B, Hosseinzadeh H (2016) Black cumin (Nigella sativa) and its active constituent, thymoquinone: an overview on the analgesic and anti-inflammatory effects. Planta Med 82:8–16. https://doi.org/10.1055/s-0035-1557838

  9. Ashraf M, Orooj A (2006) Salt stress effects on growth, ion accumulation and seed oil concentration in an arid zone traditional medicinal plant ajwain (Trachyspermum ammi [L.] Sprague). J Arid Environ 64:209–220. https://doi.org/10.1016/j.jaridenv.2005.04.015

  10. Ashraf MA, Akbar A, Parveen A, Rasheed R, Hussain I, Iqbal M (2018) Phenological application of selenium differentially improves growth, oxidative defense and ion homeostasis in maize under salinity stress. Plant Physiol Biochem 123:268–280. https://doi.org/10.1016/j.plaphy.2017.12.023

  11. Aziz EE, Al-Amier H, Craker LE (2008) Influence of salt stress on growth and essential oil production in peppermint, pennyroyal, and apple mint. J Herbs Spices Med Plants 14:77–87. https://doi.org/10.1080/10496470802341375

  12. Balal R, Khan MM, Shahid MA, Mattson NS, Abbas T, Ashfaq M, Garciasanchez F, Ghazanfer U, Gimeno V, Iqbal Z (2012) Comparative studies on the physiobiochemical, enzymatic, and ionic modifications in salt-tolerant and salt-sensitive citrus rootstocks under NaCl stress. J Am Soc Hortic Sci 137:86–95. https://doi.org/10.21273/JASHS.137.2.86

  13. Batista DS, Castro KM, Silva AR, Teixeira ML, Sales TA, Soares LI, Cardoso MG, Santos MO, Viccini LF, Otoni WC (2016) Light quality affects in vitro growth and essential oil profile in Lippia alba (Verbenaceae). In Vitro Cell Dev Biol Plant 52:276–282. https://doi.org/10.1007/s11627-016-9761-x

  14. Batista DS, Castro KM, Koehler AD, Porto BN, Silva AR, Souza VC, Teixeira ML, Cardoso MG, Santos MO, Viccini LF, Otoni WC (2017a) Elevated CO2 improves growth, modifies anatomy, and modulates essential oil qualitative production and gene expression in Lippia alba (Verbenaceae). Plant Cell Tissue Organ Cult 128:357–368. https://doi.org/10.1007/s11240-016-1115-1

  15. Batista DS, Dias LLC, Rêgo MMD, Saldanha CW, Otoni WC (2017b) Flask sealing on in vitro seed germination and morphogenesis of two types of ornamental pepper explants. Cienc Rural 47:1–6. https://doi.org/10.1590/0103-8478cr20150245

  16. Benelli G, Pavela R, Giordani C, Casettari L, Curzi G, Cappellacci L, Petrelli R, Maggi F (2018) Acute and sub-lethal toxicity of eight essential oils of commercial interest against the filariasis mosquito Culex quinquefasciatus and the housefly Musca domestica. Ind Crops Prod 112:668–680. https://doi.org/10.1016/j.indcrop.2017.12.062

  17. Böhme K, Barros-Velázquez J, Calo-Mata P, Aubourg SP (2014) Antibacterial, antiviral and antifungal activity of essential oils: mechanisms and applications. In: Villa T, Veiga-Crespo P (eds) Antimicrobial compounds. Springer, Berlin, pp 51–81. https://doi.org/10.1007/BF00033159

  18. Brito MEB, Brito KSA, Fernandes PD, Gheyi HR, Suassuna JF, Soares Filho WS, Melo AS, Xavier DA (2014) Growth of ungrafted and grafted citrus rootstocks under saline water irrigation. Afr J Agric Res 9:3600–3609. https://doi.org/10.5897/2014.9039

  19. Carmona F, Angelucci MA, Salesb DS, Chiarattib TM, Honoratoa FB, Bianchi RV, Pereira MAS (2013) Lippia alba (Mill.) N. E. Brown hydroethanolic extract of the leaves is effective in the treatment of migraine in women. Phytomedicine 20:947–950. https://doi.org/10.1016/j.phymed.2013.03.017

  20. Chakraborty K, Bhaduri D, Meena HN, Kalariya K (2016) External potassium (K+) application improves salinity tolerance by promoting Na+-exclusion, K+-accumulation and osmotic adjustment in contrasting peanut cultivars. Plant Physiol Biochem 103:143–153. https://doi.org/10.1016/j.plaphy.2016.02.039

  21. Chemat F, Maryline A-V, Xavier F (2013) Microwave-assisted extraction of essential oils and aromas. In: Chemat F, Cravotto G (eds) Microwave-assisted extraction for bioactive compounds. Springer, New York, pp 53–68. https://doi.org/10.1007/978-1-4614-4830-3_3

  22. Cross JM, Von Korff M, Altmann T, Bartzetko L, Sulpice R, Gibon Y, Palacios N, Stitt M (2006) Variation of enzyme activities and metabolite levels in 24 Arabidopsis accessions growing in carbon-limited conditions. Plant Physiol 142:1574–1588. https://doi.org/10.1104/pp.106.086629

  23. Cruz CD (2013) GENES a software package for analysis in experimental statistics and quantitative genetics. Acta Sci Agron 3:271–276. https://doi.org/10.4025/actasciagron.v38i4.32629

  24. Dawood MG, El-Awadi ME (2015) Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta Biol Colomb 20:223–235. https://doi.org/10.15446/abc.v20n2.43291

  25. Di Caterina R, Giuliani MM, Rotunno T, De Caro A, Flagella Z (2007) Influence of salt stress on seed yield and oil quality of two sunflower hybrids. Ann Appl Biol 151:145–154. https://doi.org/10.1111/j.1744-7348.2007.00165.x

  26. FAO and ITPS (2015) Status of the World’s Soil Resources (SWSR)—main report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome

  27. Fernández-García N, Olmos E, Bardisi E, García-De la Garma J, López-Berenguer C, Rubio-Asensio JS (2014) Intrinsic water use efficiency controls the adaptation to high salinity in a semi-arid adapted plant, henna (Lawsonia inermis L.). J Plant Physiol 171:64–75. https://doi.org/10.1016/j.jplph.2013.11.004

  28. Fernie AR, Roscher A, Ratcliffe RG, Kruger NJ (2001) Fructose 2,6-bisphosphate activates pyrophosphate: fructose-6-phosphate 1-phosphotransferase and increases triose phosphate to hexose phosphate cycling in heterotrophic cells. Planta 212:250–263. https://doi.org/10.1007/s004250000386

  29. Flagella Z, Giuliani MM, Rotunno T, Di Caterina R, De Caro A (2004) Effect of saline water on oil yield and quality of a high oleic sunflower (Helianthus annuus L.) hybrid. Eur J Agron 21:267–272. https://doi.org/10.1016/j.eja.2003.09.001

  30. George S, Manoharan D, Li J, Britton M, Parida A (2017) Drought and salt stress in Chrysopogon zizanioides leads to common and specific transcriptomic responses and may affect essential oil composition and benzylisoquinoline alkaloids metabolism. Curr Plant Biol 11:12–22. https://doi.org/10.1016/j.cpb.2017.12.001

  31. Gharsallah C, Fakhfakh H, Grubb D, Gorsane F (2016) Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants 8:plw055. https://doi.org/10.1093/aobpla/plw055

  32. González P, Syvertsen JP, Etxeberria E (2012) Sodium distribution in salt-stressed citrus rootstock seedlings. HortScience 47:1504–1511. https://doi.org/10.21273/HORTSCI.47.10.1504

  33. Hennebelle T, Sahpaz S, Joseph H, Bailleul F (2008) Ethnopharmacology of Lippia alba. J Ethnopharm 116:211–222. https://doi.org/10.1016/j.jep.2007.11.044

  34. Hmidi D, Abdelly C, Ashraf M, Messedi D (2018) Effect of salinity on osmotic adjustment, proline accumulation and possible role of ornithine-δ-aminotransferase in proline biosynthesis in Cakile maritima. Physiol Mol Biol Plants 24:1017–1033. https://doi.org/10.1007/s12298-018-0601-9

  35. Karnovsky MJ (1965) A formaldehyde glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137

  36. Khalid KA, Cai W (2011) The effects of mannitol and salinity stresses on growth and biochemical accumulations in lemon balm. Acta Ecol Sin 31:112–120. https://doi.org/10.1016/j.chnaes.2011.01.001

  37. Liu J, Shi DC (2010) Photosynthesis, chlorophyll fluorescence, inorganic ion and organic acid accumulations of sunflower in responses to salt and salt-alkaline mixed stress. Photosynthetica 48:127–134. https://doi.org/10.1007/s11099-010-0017-4

  38. Lorenzi H, Matos FJA (2008) Plantas Medicinais no Brasil—Nativas e Exóticas. Instituto Plantarum de Estudos da Flora, Nova Odessa

  39. Mansour MMF, Ali EF (2017) Evaluation of proline functions in saline conditions. Phytochemistry 140:52–68. https://doi.org/10.1016/j.phytochem.2017.04.016

  40. Morais LAS (2009) Influência dos fatores abióticos na composição química dos óleos essenciais. Hortic Bras 27:50–63

  41. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

  42. Navarro A, Bañón S, Olmos E, Sánchez-Blanco MJ (2007) Effects of sodium chloride on water potential components, hydraulic conductivity, gas exchange and leaf ultrastructure of Arbutus unedo plants. Plant Sci 172:473–480. https://doi.org/10.1016/j.plantsci.2006.10.006

  43. Neffati M, Marzouk B (2008) Changes in essential oil and fatty acid composition in coriander (Coriandrum sativum L.) leaves under saline conditions. Ind Crops Prod 28:137–142. https://doi.org/10.1016/j.indcrop.2008.02.005

  44. O’Brien TP, McCully ME (1981) The study of plant structure: principles and selected methods. Termarcarphi Pty. Ltd., Melbourne. https://doi.org/10.2307/1219725

  45. O'Leary N, Denham SS, Salimena F, Múlgura ME (2012) Species delimitation in Lippia section Goniostachyum (Verbenaceae) using the phylogenetic species concept. Bot J Linn Soc 170:197–219. https://doi.org/10.1111/j.1095-8339.2012.01291.x

  46. Oliveira GT, Ferreira JM, Rosa LH, Siqueira EP, Johann S, Lima LA (2014) In vitro antifungal activities of leaf extracts of Lippia alba (Verbenaceae) against clinically important yeast species. Rev Soc Bras Med Trop 47:247–250. https://doi.org/10.1590/0037-8682-0008-2013

  47. Otoni CG, Espitia PJ, Avena-Bustillos RJ, McHugh TH (2016) Trends in antimicrobial food packaging systems: emitting sachets and absorbent pads. Food Res Int 83:60–73. https://doi.org/10.1016/j.foodres.2016.02.018

  48. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349. https://doi.org/10.1016/j.ecoenv.2004.06.010

  49. Pascual ME, Slowing K, Carretero E, Sánches Mata D, Villar A (2001) Lippia: traditional uses, chemistry and pharmacology: a review. J Ethnopharm 76:201–214. https://doi.org/10.1016/S0378-8741(01)00234-3

  50. Pavela R, Govindarajan M (2017) The essential oil from Zanthoxylum monophyllum a potential mosquito larvicide with low toxicity to the non-target fish Gambusia affinis. J Pest Sci 90:369–378. https://doi.org/10.1007/s10340-016-0763-6

  51. Pérez Zamora CM, Torres CA, Nuñez MB (2018) Antimicrobial activity and chemical composition of essential oils from Verbenaceae species growing in South America. Molecules 23:544. https://doi.org/10.3390/molecules23030544

  52. Pitman MG, Läuchli A (2002) Global impact of salinity and agricultural ecosystems. In: Läuchli A, Lüttge U (eds) Salinity: environment–plants–molecules. Kluwer, Dordrecht, pp 3–20. https://doi.org/10.1007/0-306-48155-3_1

  53. Pola CC, Medeiros EA, Pereira OL, Souza VG, Otoni CG, Camilloto GP, Soares NF (2016) Cellulose acetate active films incorporated with oregano (Origanum vulgare) essential oil and organophilic montmorillonite clay control the growth of phytopathogenic fungi. Food Pack Shelf Life 9:69–78. https://doi.org/10.1016/j.fpsl.2016.07.001

  54. Qados AMA (2011) Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J Saudi Soc Agric Sci 10:7–15. https://doi.org/10.1016/j.jssas.2010.06.002

  55. Ragagnin RCG, Albuquerque CC, Oliveira FFM, Santos RG, Gurgel EP, Diniz JC, Viana FA (2014) Effect of salt stress on the growth of Lippia gracilis Schauer and on the quality of its essential oil. Acta Bot Bras 28:346–351. https://doi.org/10.1590/0102-33062014abb3369

  56. Raut JS, Karuppayil SM (2014) A status review on the medicinal properties of essential oils. Ind Crops Prod 62:250–264. https://doi.org/10.1016/j.indcrop.2014.05.055

  57. Razmjoo K, Heydarizadeh P, Sabzalian MR (2008) Effect of salinity and drought stresses on growth parameters and essential oil content of Matricaria chamomile. Int J Agric Biol 10:451–454

  58. Rodríguez-Gamir J, Ancillo G, Legaz F, Primo-Millo E, Forner-Giner MA (2012) Influence of salinity on PIP gene expression in citrus roots and its relationship with root hydraulic conductance, transpiration and chloride exclusion from leaves. Environ Exp Bot 78:163–166. https://doi.org/10.1016/j.envexpbot.2011.12.027

  59. Romero-Aranda R, Moya JL, Tadeo FR, Legaz F, Primo-Millo E, Talon M (1998) Physiological and anatomical disturbances induced by chloride salts in sensitive and tolerant citrus: Beneficial and detrimental effects of cations. Plant Cell Environ 21:1243–1253. https://doi.org/10.1046/j.1365-3040.1998.00349.x

  60. Santos LS, Dalmázio I, Eberlin MN, Claeys M, Augusti R (2006) Mimicking the atmospheric OH-radical-mediated photooxidation of isoprene: formation of cloud-condensation nuclei polyols monitored by electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 20:2104–2108. https://doi.org/10.1002/rcm.2574

  61. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

  62. Slama I, Abdelly C, Bouchereau A, Flowers T, Savoure A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447. https://doi.org/10.1093/aob/mcu239

  63. Stefanoudaki E, Williams M, Chartzoulakis K, Harwood J (2009) Olive oil qualitative parameters after orchard irrigation with saline water. J Agric Food Chem 57:1421–1425. https://doi.org/10.1021/jf8030327

  64. Syvertsen JP, Garcia-Sanchez F (2014) Multiple abiotic stresses occurring with salinity stress in citrus. Environ Exp Bot 103:128–137. https://doi.org/10.1016/j.envexpbot.2013.09.015

  65. Taarit MB, Msaada K, Hosni K, Hammami M, Kchouk ME, Marzouk B (2009) Plant growth, essential oil yield and composition of sage (Salvia officinalis L.) fruits cultivated under salt stress conditions. Ind Crops Prod 30:333–337. https://doi.org/10.1016/j.foodchem.2009.07.055

  66. Taarit MB, Msaada K, Hosni K, Marzouk B (2010) Changes in fatty acid and essential oil composition of sage (Salvia officinalis L.) leaves under NaCl stress. Food Chem 119:951–956

  67. Viccini LF, Pierre PMO, Praça MM, Souza-Costa DC, Romanel E, Sousa SM, Peixoto PHP, Salimena FRG (2006) Chromosome numbers in the genus Lippia (Verbenaceae). Plant Syst Evol 256:171–178. https://doi.org/10.1007/s00606-005-0351-3

  68. Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283

  69. Vieira RF, Silva DB, Salimena FRG (2016) Lippia alba­ – Erva-cidreira. In: Vieira RF, Camillo J, Coradin L (eds) Espécies nativas da flora brasileira de valor econômico atual ou potencial – Plantas para o futuro:  Região Centro-Oeste. MMA, Brasília, pp 383–394

  70. Wagas KK, Erum D, Tanveer A, Hammad I, Bushra M (2016) Evaluation of Ajuga bracteosa for antioxidant, anti-inflammatory, analgesic, antidepressant and anticoagulant activities. BMC Complem Altern Med 16:375. https://doi.org/10.1186/s12906-016-1363-y

  71. Wang X, Geng S, Ri YJ, Cao D, Liu J, Shi D, Yang C (2011) Physiological responses and adaptive strategies of tomato plants to salt and alkali stresses. Sci Hortic 130:248–255. https://doi.org/10.1016/j.scienta.2011.07.006

  72. Wani AS, Ahmad A, Hayat S, Tahir I (2019) Epibrassinolide and proline alleviate the photosynthetic and yield inhibition under salt stress by acting on antioxidant system in mustard. Plant Physiol Biochem 135:385–394. https://doi.org/10.1016/j.plaphy.2019.01.002

  73. Welburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313. https://doi.org/10.1016/S0176-1617(11)81192-2

  74. Yadav RK, Sangwan RS, Srivastava AK, Sangwan NS (2017) Prolonged exposure to salt stress affects specialized metabolites-artemisinin and essential oil accumulation in Artemisia annua L.: metabolic acclimation in preferential favour of enhanced terpenoid accumulation accompanying vegetative to reproductive phase transition. Protoplasma 254:505–522. https://doi.org/10.1007/s00709-016-0971-1

  75. Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:529–539. https://doi.org/10.1046/j.1365-313X.2002.01309.x

  76. Zhifang G, Loescher WH (2003) Expression of a celery mannose 6-phosphate reductase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesis of both mannitol and a glucosyl-mannitol dimmer. Plant Cell Environ 26:275–283. https://doi.org/10.1046/j.1365-3040.2003.00958.x

Download references

Acknowledgements

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, DF, Brazil; Grants 432412/2016-6 and 313740/2017-8 to LFV), and Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior, CAPES, DF, Brazil; Finance Code 001), for financial support. Dr. Roberto Fontes Vieira (Embrapa Recursos Genéticos e Biotecnologia—Embrapa/Cenargen, Brasília, DF, Brazil) is acknowledged for providing the Lippia alba accession, and Dr. Fátima R.G. Salimena (Department of Botany, UFJF) for identifying L. alba accessions. We would like to thank Editage (www.editage.com) for English language editing.

Author information

KMC and DSB conceived and designed the experiments; KMC raised the in vitro plants; TDS, EAF, SHSF, AMF, and RMJS performed the morpho-anatomical and physiological analyses; KMC, LSQN, VRC, and RMG performed the chemical analyses; DSB performed the gene expression analysis by RT-qPCR; KMC and DSB performed the statistical analysis; KMC, DSB, LFV, RMG, and WCO contributed to the design and interpretation of the research and to the writing of the paper. All authors read and approved the manuscript.

Correspondence to Wagner Campos Otoni.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Pamela J. Weathers.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Castro, K.M., Batista, D.S., Silva, T.D. et al. Salinity modulates growth, morphology, and essential oil profile in Lippia alba L. (Verbenaceae) grown in vitro. Plant Cell Tiss Organ Cult 140, 593–603 (2020). https://doi.org/10.1007/s11240-019-01755-8

Download citation

Keywords

  • Eucalyptol
  • Germacrene
  • Linalool
  • Medicinal plant
  • Sodium chloride
  • Stress