Advertisement

Reference gene selection for qRT-PCR in Brazilian-ginseng [Pfaffia glomerata (Spreng.) Pedersen] as affected by various abiotic factors

  • Diego Silva Batista
  • Viviane Santos Moreira
  • Sergio Heitor Sousa Felipe
  • Evandro Alexandre Fortini
  • Tatiane Dulcineia Silva
  • Kristhiano Chagas
  • Eliza Louback
  • Elisson Romanel
  • Marcio Gilberto Cardoso Costa
  • Wagner Campos OtoniEmail author
Original Article
  • 52 Downloads

Abstract

The determination of the best reference gene is essential to improve and guarantee the accuracy of the qPCR technique. Thus, the objective of this work was to evaluate the normalization genes efficiency for qRT-PCR studies of Pfaffia glomerata, a species with marked medicinal and industrial interests due to the production of the phytoecdysteroid 20-hydroxyecdysone (20-E). We have selected four candidates as reference genes in P. glomerata: elongation factor- (EF-), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), spectrin-like (SPT) and α-tubulin (TUA), and tested their expression stabilities as affected by abiotic factors (salt stress, drought stress, irradiance, photoperiod and CO2 enrichment), using the following methods: NormFinder, geNorm, BestKeeper, ΔCt and RefFinder. Also, the Phantom gene, which belongs to the 20-E biosynthesis pathway, was targeted to validate the most stable reference gene for each abiotic factor. The GAPDH was the most stable gene under all assessed abiotic factors, as well as the most stable when data from all experiments were taken together, which was confirmed by all the software used. The use of more or less stable reference genes for normalization significantly changes the interpretation of the qPCR data, evidencing the importance of choosing the most appropriate housekeeping gene for each expression assay. Based on our results, we recommend GAPDH to be used for normalization of qPCR expression data in P. glomerata in diverse abiotic conditions. This work is the first report on the validation of reference genes in P. glomerata and will be fundamental for further gene expression studies in this important medicinal species.

Key message

GAPDH is the most stable gene to be used for the normalization in qPCR analyzes in [Pfaffia glomerata (Spreng.) Pedersen] under the different abiotic factors.

Keywords

Abiotic conditions Brazilian ginseng Gene expression Quantitative real time Reference gene 

Notes

Acknowledgments

The authors thank the Brazilian sponsoring agencies, CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil), FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior), for financial support.

Authors contribution

DSB, SHSF, EAF, TDS, KC and EL conceived, designed and performed the experiments; DSB and VSM collected and analyzed the data; DSB, VSM, MGCC, and WCO contributed to the design and interpretation of the research and to the writing of the paper. All authors read and approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11240_2019_1606_MOESM1_ESM.pdf (400 kb)
Supplementary material 1 (PDF 400 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410.  https://doi.org/10.1016/S0022-2836(05)80360-2 CrossRefGoogle Scholar
  2. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of realtime quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250.  https://doi.org/10.1158/0008-5472.CAN-04-0496 CrossRefGoogle Scholar
  3. Artico S, Nardeli SM, Brilhante O, Grossi-de-Sa MF, Alves-Ferreira M (2010) Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biol 10:49.  https://doi.org/10.1186/1471-2229-10-49 CrossRefGoogle Scholar
  4. Ashrafi M, Moqadam MRA, Moradi P, Mohsenifard E, Shekari F (2018) Evaluation and validation of housekeeping genes in two contrast species of thyme plant to drought stress using real-time PCR. Plant Physiol Biochem 132:54–60.  https://doi.org/10.1016/j.plaphy.2018.08.007 CrossRefGoogle Scholar
  5. Barsalobres-Cavallari CF, Severino FE, Maluf MP, Maia IG (2009) Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Mol Biol 10:1.  https://doi.org/10.1186/1471-2199-10-1 CrossRefGoogle Scholar
  6. Batista DS, Dias LLC, Rêgo MM, Saldanha CW, Otoni WC (2017) Flask sealing on in vitro seed germination and morphogenesis of two types of ornamental pepper explants. Cienc Rural 47:1–6.  https://doi.org/10.1590/0103-8478cr20150245 Google Scholar
  7. Batista DS, Koehler AD, Romanel E, Souza VC, Silva TD, Almeida MC, Maciel TEF, Ferreira PRB, Felipe SHS, Saldanha CW, Maldaner J, Dias LLC, Festucci-Buselli RA, Otoni WC (2018) De novo assembly and transcriptome of Pfaffia glomerata uncovers the role of photoautotrophy and the P450 family genes in 20-hydroxyecdysone production. Protoplasma.  https://doi.org/10.1007/s00709-018-1322-1 Google Scholar
  8. Chervoneva I, Li Y, Schulz S, Croker S, Wilson C, Waldman SA, Hyslop T (2010) Selection of optimal reference genes for normalization in quantitative RT-PCR. BMC Bioinf 11:253.  https://doi.org/10.1186/1471-2105-11-253 CrossRefGoogle Scholar
  9. Christenhusz MJM, Byng JW (2016) The number of known plants species in the world and its annual increase. Phytotaxa 261:201–217CrossRefGoogle Scholar
  10. Clouse JW, Adhikary D, Page JT, Ramaraj T, Deyholos MK, Udall JA, Fairbanks DJ, Jellen EN, Maughan PJ (2015) The Amaranth genome: genome, transcriptome, and physical map assembly. Plant Genome.  https://doi.org/10.3835/plantgenome2015.07.0062 Google Scholar
  11. Corrêa JPO, Vital CE, Pinheiro MVM, Batista DS, Azevedo JFL, Saldanha CW, Cruz ACF, DaMatta FM, Otoni WC (2015) In vitro photoautotrophic potential and ex vitro photosynthetic competence of Pfaffia glomerata (Spreng.) Pedersen accessions. Plant Cell Tissue Organ Cult 121:289–300.  https://doi.org/10.1007/s11240-014-0700-4 CrossRefGoogle Scholar
  12. Corrêa JPO, Vital CE, Pinheiro MVM, Batista DS, Saldanha CW, Cruz ACF, Notini MM, Freitas DMS, DaMatta FM, Otoni WC (2016) Induced polyploidization increases 20-hydroxyecdysone content, in vitro photoautotrophic growth, and ex vitro biomass accumulation in Pfaffia glomerata (Spreng.) Pedersen. Vitro Cell Dev Biol Plant 52:45–55.  https://doi.org/10.1007/s11627-016-9746-9 CrossRefGoogle Scholar
  13. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R (2005) Reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17.  https://doi.org/10.1104/pp.105.063743 CrossRefGoogle Scholar
  14. De Jonge HJ, Fehrmann RS, De Bont ES, Hofstra RM, Gerbens F, Kamps WA, De Vries EGE, Van der Zee AGJ, Te Meerman GJ, Ter Elst A (2007) Evidence based selection of housekeeping genes. PLoS ONE 2:e898.  https://doi.org/10.1371/journal.pone.0000898 CrossRefGoogle Scholar
  15. De Keyser E, Desmet L, Van Bockstaele E, De Riek J (2013) How to perform RT-qPCR accurately in plant species? A case study on flower colour gene expression in an azalea (Rhododendron simsii hybrids) mapping population. BMC Mol Biol 14:13.  https://doi.org/10.1186/1471-2199-14-13 CrossRefGoogle Scholar
  16. De Ruijter NC, Ketelaar T, Blumenthal SS, Emons AMC, Schel JH (2000) Spectrin-like proteins in plant nuclei. Cell Biol Int 24:427–438.  https://doi.org/10.1006/cbir.2000.0508 CrossRefGoogle Scholar
  17. De Spiegelaere W, Dern-Wieloch J, Weigel R, Schumacher V, Schorle H, Nettersheim D, Bergmann M, Brehm R, Kliesch S, Vandekerckhove L, Fink C (2015) Reference gene validation for RT-qPCR, a note on different available software packages. PLoS ONE 10:e0122515.  https://doi.org/10.1371/journal.pone.0122515 CrossRefGoogle Scholar
  18. Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A (2004) Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37:112–114.  https://doi.org/10.2144/04371RR03 CrossRefGoogle Scholar
  19. Dinan L (2001) Phytoecdysteroids: biological aspects. Phytochemistry 57:325–339.  https://doi.org/10.1016/S0031-9422(01)00078-4 CrossRefGoogle Scholar
  20. Dinan L, Harmatha J, Volodin V, Lafont R (2009) Phytoecdysteroids: diversity, biosynthesis and distribution. In: Smaggbe G (ed) Ecdysone: structures and functions. Springer, London, pp 3–10CrossRefGoogle Scholar
  21. Dohm JC, Minoche AE, Holtgrawe D, Capella-Gutierrez S, Zakrzewski F, Tafer H, Rupp O, Sorensen TR, Stracke R, Reinhardt R, Goesmann A, Kraft T, Schulz B, Stadler PF, Schmidt T, Gabaldón T, Lehrach H, Weisshaar B, Himmelbauer H (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505:546–549.  https://doi.org/10.1038/nature12817 CrossRefGoogle Scholar
  22. Festucci-Buselli RA, Contim LSA, Barbosa LCA, Stuart J, Otoni WC (2008) Biosynthesis and potential functions of the ecdysteroid 20-hydroxyecdysone—a review. Botany 86:978–987.  https://doi.org/10.1139/B08-049 CrossRefGoogle Scholar
  23. Flores R, Brondani D, Cezarotto V, Giacomelli SR, Nicoloso FT (2010) Micropropagation and β-ecdysone content of the Brazilian ginsengs Pfaffia glomerata and Pfaffia tuberosa. Vitro Cell Dev Biol Plant 46:210–217.  https://doi.org/10.1007/s11627-010-9286-7 CrossRefGoogle Scholar
  24. Gu CS, Liu LQ, Xu C, Zhao YH, Zhu XD, Huang SZ (2014) Reference gene selection for quantitative real-time RT-PCR normalization in Iris lactea var. chinensis roots under cadmium, lead, and salt stress conditions. Sci World J 2014:532713.  https://doi.org/10.1155/2014/532713 Google Scholar
  25. Gutierrez L, Mauriat M, Guénin S, Pelloux J, Lefebvre JF, Louvet R, Rusterucci C, Moritz T, Guerineau F, Bellini C, Van Wuytswinkel O (2008) The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol J 6:609–618.  https://doi.org/10.1111/j.1467-7652.2008.00346.x CrossRefGoogle Scholar
  26. Harborne JB (1999) Classes and functions of secondary products from plants. Chemicals from plants: perspectives on plant secondary products. Imperial College Press, London, pp 1–25.  https://doi.org/10.1142/9789812817273_0001 Google Scholar
  27. Hellemans J, Vandesompele J (2014) Selection of reliable reference genes for RT-qPCR analysis. Quantitative Real-Time PCR. Humana Press, New York, pp 19–26.  https://doi.org/10.1007/978-1-4939-0733-5_3 CrossRefGoogle Scholar
  28. Hernandez FPV, Nuñez MM, Rivas MR, Portillo REV, Martinez MDB, Suarez SL, Cardenas FR (2018) Reference genes for RT-qPCR normalization in different tissues, developmental stages and stress conditions of amaranth. Plant Biol 20:713–721.  https://doi.org/10.1111/plb.12725 CrossRefGoogle Scholar
  29. Huis R, Hawkins S, Neutelings G (2010) Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biol 10:71.  https://doi.org/10.1186/1471-2229-10-71 CrossRefGoogle Scholar
  30. Iarema L, Cruz ACF, Saldanha CW, Dias LLC, Vieira RF, Oliveira EJ, Otoni WC (2012) Photoautotrophic propagation of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Cell Tissue Organ Cult 110:227–238.  https://doi.org/10.1007/s11240-012-0145-6 CrossRefGoogle Scholar
  31. Jazi MM, Khorzoghi EG, Botanga C, Seyedi SM (2016) Identification of reference genes for quantitative gene expression studies in a non-model tree pistachio (Pistacia vera L.). PLoS ONE 11:e0157467.  https://doi.org/10.1371/journal.pone.0157467 CrossRefGoogle Scholar
  32. Kozera B, Rapacz M (2013) Reference genes in real-time PCR. J Appl Genet 54:391–406.  https://doi.org/10.1007/s13353-013-0173-x CrossRefGoogle Scholar
  33. Lafont R, Dinan L (2003) Practical uses for ecdysteroids in mammals including humans: an update. J Insect Sci 3:7.  https://doi.org/10.1093/jis/3.1.7 CrossRefGoogle Scholar
  34. Li J, Han X, Wang C, Qi W, Zhang W, Tang L, Zhao X (2017) Validation of suitable reference genes for RT-qPCR data in Achyranthes bidentata blume under different experimental conditions. Front Plant Sci 8:776.  https://doi.org/10.3389/fpls.2017.00776 CrossRefGoogle Scholar
  35. Lin YL, Lai ZX (2010) Reference gene selection for qPCR analysis during somatic embryogenesis in longan tree. Plant Sci 178:359–365.  https://doi.org/10.1016/j.plantsci.2010.02.005 CrossRefGoogle Scholar
  36. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefGoogle Scholar
  37. Moreira VS, Soares VL, Silva RJ, Sousa AO, Otoni WC, Costa MG (2018) Selection and validation of reference genes for quantitative gene expression analyses in various tissues and seeds at different developmental stages in Bixa orellana L. Physiol Mol Biol Plants 24:369–378.  https://doi.org/10.1007/s12298-018-0528-1 CrossRefGoogle Scholar
  38. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497.  https://doi.org/10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  39. Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M (2009) Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol 10:11.  https://doi.org/10.1186/1471-2199-10-11 CrossRefGoogle Scholar
  40. Pérez-Munive C, De la Espina SMD (2011) Nuclear spectrin-like proteins are structural actin-binding proteins in plants. Biol Cell 103:145–157.  https://doi.org/10.1042/BC20100083 CrossRefGoogle Scholar
  41. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515.  https://doi.org/10.1023/B:BILE.0000019559.84305.47 CrossRefGoogle Scholar
  42. Saldanha CW, Otoni CG, Notini MM, Kuki KN, Cruz ACF, Rubio Neto A, Dias LLC, Otoni WC (2013) A CO2-enriched atmosphere improves in vitro growth of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Vitro Cell Dev Biol Plant 49:433–444.  https://doi.org/10.1007/s11627-013-9529-5 CrossRefGoogle Scholar
  43. Saldanha CW, Otoni CG, Rocha DI, Cavatte PC, Detmann KDSC, Tanaka FAO, Dias LLC, DaMatta FM, Otoni WC (2014) CO2-enriched atmosphere and supporting material impact the growth, morphophysiology and ultrastructure of in vitro Brazilian-ginseng [Pfaffia glomerata (Spreng.) Pedersen] plantlets. Plant Cell, Tissue Organ Cult 118:87–99.  https://doi.org/10.1007/s11240-014-0464-x CrossRefGoogle Scholar
  44. Silver N, Best S, Jiang J, Thein SL (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 7:33.  https://doi.org/10.1186/1471-2199-7-33 CrossRefGoogle Scholar
  45. Sinha P, Singh VK, Suryanarayana V, Krishnamurthy L, Saxena RK, Varshney RK (2015) Evaluation and validation of housekeeping genes as reference for gene expression studies in pigeonpea (Cajanus cajan) under drought stress conditions. PLoS ONE 10:e0122847.  https://doi.org/10.1371/journal.pone.0122847 CrossRefGoogle Scholar
  46. Siqueira BV, Soares BE, Oliveira DR, Sakuragui CM (2017) The regionalization of medicalized vernacular names of medicinal plants in Brazil. Scientometrics 110:945–966.  https://doi.org/10.1007/s11192-016-2184-y CrossRefGoogle Scholar
  47. Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E (1999) Housekeeping genes as internal standards: use and limits. J Biotechnol 75:291–295.  https://doi.org/10.1016/S0168-1656(99)00163-7 CrossRefGoogle Scholar
  48. Thiem B, Kikowska M, Maliński MP, Kruszka D, Napierała M, Florek E (2017) Ecdysteroids: production in plant in vitro cultures. Phytochem Rev 16:603–622.  https://doi.org/10.1007/s11101-016-9483-z CrossRefGoogle Scholar
  49. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(research0034):1.  https://doi.org/10.1186/gb-2002-3-7-research0034 Google Scholar
  50. Wang X, Ma X, Huang L, Zhang X (2015) Identification of the valid reference genes for quantitative RT-PCR in annual ryegrass (Lolium multiflorum) under salt stress. Molecules 20:4833–4847.  https://doi.org/10.3390/molecules20034833 CrossRefGoogle Scholar
  51. Xie F, Xiao P, Chen D, Xu L, Zhang B (2012) miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 80:75–84.  https://doi.org/10.1007/s11103-012-9885-2 CrossRefGoogle Scholar
  52. Xu C, Jiao C, Sun H, Cai X, Wang X, Ge C, Zheng Y, Liu W, Sun X, Xu Y, Deng J, Zhang Z, Huang S, Dai S, Mou B, Wang Q, Fei Z, Wang Q (2017) Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nat Commun 8:15275.  https://doi.org/10.1038/ncomms15275 CrossRefGoogle Scholar
  53. Yan X, Dong X, Zhang W, Yin H, Xiao H, Chen P, Ma XF (2014) Reference gene selection for quantitative real-time PCR normalization in Reaumuria soongorica. PLoS ONE 9:e104124.  https://doi.org/10.1371/journal.pone.0104124 CrossRefGoogle Scholar
  54. Yin Z, Ke X, Huang D, Gao X, Voegele RT, Kang Z, Huang L (2013) Validation of reference genes for gene expression analysis in Valsa mali var. mali using real-time quantitative PCR. World J Microb Biot 29:1563–1571.  https://doi.org/10.1007/s11274-013-1320-6 CrossRefGoogle Scholar
  55. Zhang Y, Han X, Chen S, Zheng L, He X, Liu M, He X, Liu M, Qiao G, Wang Y, Zhuo R (2017) Selection of suitable reference genes for quantitative real-time PCR gene expression analysis in Salix matsudana under different abiotic stresses. Sci Rep 7:40290.  https://doi.org/10.1038/srep40290 CrossRefGoogle Scholar
  56. Zhu X, Li X, ChenW Chen J, LuW Chen L, Fu D (2012) Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions. PLoS ONE 7:e44405.  https://doi.org/10.1371/journal.pone.0044405 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.PPG em Agricultura e AmbienteUniversidade Estadual do MaranhãoSão LuísBrazil
  2. 2.Instituto Federal da Bahia-Campus Euclides da Cunha–IFBAEuclides da CunhaBrazil
  3. 3.Laboratório de Cultura de Tecidos Vegetais (LCTII), Departamento de Biologia Vegetal/BIOAGROUniversidade Federal de ViçosaViçosaBrazil
  4. 4.Laboratório de Genômica de Plantas e Bioenergia (PGEMBL), Departamento de BiotecnologiaEEL/USPLorenaBrazil
  5. 5.Departamento de Ciências BiológicasUniversidade Estadual de Santa CruzIlhéusBrazil

Personalised recommendations