Towards a new approach of controlling endophytic bacteria associated with date palm explants using essential oils, aqueous and methanolic extracts from medicinal and aromatic plants

  • Reda MezianiEmail author
  • Mouaad Amine Mazri
  • Adil Essarioui
  • Chakib Alem
  • Ghizlane Diria
  • Fatima Gaboun
  • Hicham El Idrissy
  • Mohamed Laaguidi
  • Fatima Jaiti
Original Article


We identified two strains of endophytic bacteria associated with date palm explants by 16S rRNA gene amplification and sequencing, and we explored different approaches to control them. Based on their 16S sequences, the two isolates were identified as Microbacterium testaceum and Serratia marcescens. Antibacterial activity of essential oils, methanolic and aqueous extracts, from seven plant species against these endophytic bacteria was studied using different methods. The essential oils and the aqueous extracts of Artemisia herba-alba, Rosmarinus officinalis and Thymus satureioides inhibited the growth of both isolates through the disc diffusion method. The inhibition zones ranged from 18 to 31.5 mm and from 5 to 7 mm for essential oils and aqueous extracts, respectively. The minimum inhibitory concentration (MIC) and the minimum bacteriocidal concentration (MBC) values ranged from 0.025 to 0.033% and 0.033 to 0.05%, respectively. None of the methanolic extracts had any activity against the bacteria. The incorporation of the extracts into the culture medium showed different results depending on culture phase. During the induction phase, none of the extracts was able to inhibit the bacterial growth without causing phytotoxicity. During shoot bud multiplication, only the essential oils of A. herba-alba at the concentration of 0.1% inhibited the bacterial growth without causing phytotoxicity. Furthermore, the explants showed normal growth with an average number of 13.1 shoot buds per explant. The use of extract-impregnated plugs showed no inhibitory activity against the bacteria, whereas immersing explants in the antibacterial solutions caused browning and death of plant tissues.

Key message

The endophytic bacteria observed during date palm organogenesis and somatic embryogenesis were identified for the first time ever using 16S sequencing, and a new biological and efficient approach to control it was developed.


16S sequencing Endophytic bacteria Organogenesis Plant extracts Phoenix dactylifera L. 



We are very grateful to Mr. Elmostafa El Fahime from the National Center for Scientific and Technical Research (CNRST, Rabat, Morocco) for his valuable assistance in 16S rRNA gene sequencing.

Author contributions

RM, MAM, CA and FJ conceived and designed research. RM, HEI and ML prepared plant extracts and essential oils. RM, AE, HEI and ML performed antibacterial activity experiments. RM, MAM, HEI and ML performed organogenesis experiments. GD and FG performed DNA sequencing and bacteria identification. MAM and AE wrote the manuscript. MAM conducted statistical analysis. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abahmane L (2011) Date palm micropropagation via organogenesis. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Dordrecht, pp 69–90CrossRefGoogle Scholar
  2. Abdallah EM (2011) Plants: an alternative source for antimicrobials. J Appl Pharm Sci 1:16–20Google Scholar
  3. Abd-El Kareim AHE (2009) Using actinomycetes on controlling bacterial contamination of date palm during different stages in vitro. J Hortic Sci Ornam Plants 1:92–99Google Scholar
  4. Al-Dosary NH, Al-Mosaui MA, Al-Taha HA (2011) Isolation and identification of bacterial types that causes contamination of date palm Phoenix dactylifera L. callus and studying inhibitory activates of some plant extracts and antibiotic. Basra J Date Palm Res 10:68–81Google Scholar
  5. Al-Mussawii MAY (2010) The source of bacterial contamination in date palm (Phoenix dactylifera L.) grown in vitro. Basra J Date Palm Res 9:132–146Google Scholar
  6. Babu PD, Subhasree RS (2009) Antimicrobial ACTIVITIES of Lawsonia inermis—A review. Acad J Plant Sci 2(4):231–232Google Scholar
  7. Benjama A, Charkaoui B (1997) Control of Bacillus contaminating date palm tissue in micropropagation using antibiotics. In: Cassells AC (ed) Pathogen and microbial management in micropropagation. Springer, Dordrecht, pp 207–211Google Scholar
  8. Bittencourt MLF, Ribeiro PR, Franco RLP, Hilhorst HWM, de Castro RD, Fernandez LG (2015) Metabolite profiling, antioxidant and antibacterial activities of Brazilian propolis: use of correlation and multivariate analyses to identify potential bioactive compounds. Food Res Int 76:449–457CrossRefGoogle Scholar
  9. Celiktas OY, Kocabas EEH, Bedir E, Sukan FV, Ozek T, Baser KHC (2007) Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis, depending on location and seasonal variations. Food Chem 100:553–559CrossRefGoogle Scholar
  10. Charkaoui B (1997) Isolement, identification, et lutte contre les contaminations bactériennes en culture in vitro chez Phoenix dactylifera L. Thèse de Doctorat de 3ème cycle. Université Cadi Ayyad, Marrakesh, MoroccoGoogle Scholar
  11. De Sousa DP (2011) Analgesic-like activity of essential oils constituents. Molecules 16:2233–2252CrossRefGoogle Scholar
  12. Edris AE, Farrag ES (2003) Antifungal activity of peppermint and sweet basil essential oils and their major aroma constituents on some plant pathogenic fungi from the vapour phase. Nahrung/Food 47:117–121CrossRefGoogle Scholar
  13. El Asbahani A, Jilale A, Voisin SN, Aït Addi EH, Casabianca H, El Mousadik A, Hartmann DJ, Renaud FNR (2015) Chemical composition and antimicrobial activity of nine essential oils obtained by steam distillation of plants from the Souss-Massa region (Morocco). J Essent Oil Res 27:34–44CrossRefGoogle Scholar
  14. Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 183:2634–2645CrossRefGoogle Scholar
  15. Inoue M, Craker LE (2014) Medicinal and aromatic plants-uses and functions. In: Dixon GR, Aldous DE (eds) Horticulture: plants for people and places volume 2. Springer, Dordrecht, pp 645–669Google Scholar
  16. Jain SM (2011) Radiation-induced mutations for date palm improvement. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Dordrecht, pp 271–286CrossRefGoogle Scholar
  17. Krueger RR (2011) Date palm germplasm. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Dordrecht, pp 313–336CrossRefGoogle Scholar
  18. Krueger RR (2015) Date palm status and perspective in the United States. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Date palm genetic resources and utilization volume 1: Africa and the Americas. Springer, Dordrecht, pp 447–485Google Scholar
  19. Laborda R, Manzano I, Gamón M, Gavidia I, Pérez-Bermúdez P, Boluda R (2013) Effects of Rosmarinus officinalis and Salvia officinalis essential oils on Tetranychus urticae Koch (Acari: Tetranychidae). Ind Crop Prod 48:106–110CrossRefGoogle Scholar
  20. Leary JV, Nelso N, Tisserat B, Allingham EA (1986) Isolation of pathogenic Bacillus circulans from callus cultures and healthy offshoots of date palm (Phoenix dactylifera L.). Appl Envir Microbiol 52:1173–1176Google Scholar
  21. Masmoudi-Allouche F, Meziou B, Kriaâ W, Gargouri-Bouzid R, Drira N (2011) In vitro flowering of date palm. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Dordrecht, pp 585–604CrossRefGoogle Scholar
  22. Mazri MA (2014) Effects of plant growth regulators and carbon source on shoot proliferation and regeneration in date palm (Phoenix dactylifera L.) ‘16-bis’. J Hortic Sci Biotechnol 89:415–422CrossRefGoogle Scholar
  23. Mazri MA (2015) Role of cytokinins and physical state of the culture medium to improve in vitro shoot multiplication, rooting and acclimatization of date palm (Phoenix dactylifera L.) cv. Boufeggous. J Plant Biochem Biotechnol 24:268–275CrossRefGoogle Scholar
  24. Mazri MA, Meziani R (2013) An improved method for micropropagation and regeneration of date palm (Phoenix dactylifera L.). J Plant Biochem Biotechnol 22(2):176–184CrossRefGoogle Scholar
  25. Mazri MA, Meziani R (2015) Micropropagation of date palm: a review. Cell Dev Biol 4(3):160Google Scholar
  26. Mazri MA, Meziani R, El Fadile J, Ezzinbi A (2016) Optimization of medium composition for in vitro shoot proliferation and growth of date palm cv. Mejhoul. 3 Biotech 6:111CrossRefGoogle Scholar
  27. Mazri MA, Belkoura I, Meziani R, Mokhless B, Nour S (2017) Somatic embryogenesis from bud and leaf explants of date palm (Phoenix dactylifera L.) cv. Najda. 3 Biotech 7:58CrossRefGoogle Scholar
  28. Mazri MA, Meziani R, Belkoura I, Mokhless B, Nour S (2018) A combined pathway of organogenesis and somatic embryogenesis for an efficient large-scale propagation in date palm (Phoenix dactylifera L.) cv. Mejhoul. 3 Biotech 8:215CrossRefGoogle Scholar
  29. Meziani R, Jaiti F, Mazri MA, Anjarne M, Ait Chitt M, El Fadile J, Alem C (2015) Effects of plant growth regulators and light intensity on the micropropagation of date palm (Phoenix dactylifera L.) cv. Mejhoul. J Crop Sci Biotechnol 18(5):325–331CrossRefGoogle Scholar
  30. Meziani R, Jaiti F, Mazri MA, Hassani A, Ben Salem S, Anjarne M, Ait Chitt M, Alem C (2016) Organogenesis of Phoenix dactylifera L. cv. Mejhoul: Influences of natural and synthetic compounds on tissue browning, and analysis of protein concentrations and peroxidase activity in explants. Sci Hortic 204:145–152CrossRefGoogle Scholar
  31. Morohoshi T, Wang WZ, Someya N, Ikeda T (2011) Genome sequence of Microbacterium testaceum StLB037, an N-acylhomoserine lactone-degrading bacterium isolated from potato leaves. J Bacteriol 193:2072–2073CrossRefGoogle Scholar
  32. Murashige T, Skoog FA (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Phys Planta 15:473–479CrossRefGoogle Scholar
  33. Najjaa H, Neffati M, Zouari S, Ammar E (2007) Essential oil composition and antibacterial activity of different extracts of Allium roseum L. North African endemic species. Comptes Rendus Chim 10:820–826CrossRefGoogle Scholar
  34. Ojaghian MR, Wang Q, Li X, Sun X, Xie G-L, Zhang JZ, Fan HW, Wang L (2016) Inhibitory effect and enzymatic analysis of E-cinnamaldehyde against sclerotinia carrot rot. Pestic Biochem Physiol 127:8–14CrossRefGoogle Scholar
  35. Ponce A, Fritz R, del Valle C, Roura S (2003) Antimicrobial activity of essential oils on the native microflora of organic Swiss chard. Food Sci Technol 36:679–684Google Scholar
  36. Roohinejad S, Koubaa M, Barba FJ, Leong SY, Khelfa A, Greiner R, Chemat F (2018) Extraction methods of essential oils from herbs and spices. In: Hashemi SMB, Khaneghah AM, Sant’Ana AS (eds) Essential oils in food processing. IFT Press, Oxford, pp 21–55Google Scholar
  37. Sedra MH (2011) Development of new Moroccan selected date palm varieties resistant to bayoud and of good fruit quality. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Dordrecht, pp 513–531CrossRefGoogle Scholar
  38. Sedra MH (2015) Date palm status and perspective in Morocco. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Date palm genetic resources and utilization volume 1: Africa and the Americas. Springer, Dordrecht, pp 257–323Google Scholar
  39. Sedra MH, Lazrek BH (2011) Fusarium oxysporum f. sp. albedinis toxin characterization and use for selection of resistant date palm to bayoud disease. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Dordrecht, pp 253–270CrossRefGoogle Scholar
  40. Shao X, Cheng S, Wang H, Yu D, Mungai C (2013) The possible mechanism of antifungal action of tea tree oil on Botrytis cinerea. J Appl Microbiol 114:1642–1649CrossRefGoogle Scholar
  41. Soylu EM, Yigitbas H, Tok FM, Soylu S, Kurt S, Baysal O, Kaya AD (2005) Chemical composition and antifungal activity of the essential oil of Artemisia annua L. against foliar and soil-borne fungal pathogens. Z Pflanzenk Pflanzen 112:229–239Google Scholar
  42. Soylu EM, Kurt S, Soylu S (2010) In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. Int J Food Microbiol 143:183–189CrossRefGoogle Scholar
  43. Takeuchi T, Sawada H, Tanaka F, Matsuda I (1996) Phylogenetic analysis of Streptomyces spp. causing potato scab based on 16S rRNA sequences. Int J Syst Bacteriol 46:476–479CrossRefGoogle Scholar
  44. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefGoogle Scholar
  45. Tantaoui-Elaraki A, Lattaoui N, Errifi A, Benjilali B (1993) Composition and antimicrobial activity of the essential oils of Thymus broussonettii, T xygis and T satureioides. J Essent Oil Res 5:45–53CrossRefGoogle Scholar
  46. Viuda-Martos M, Mohamady MA, Fernández-López J, Abd El Razik KA, Omer EA, Pérez-Alvarez JA, Sendra E (2011) In vitro antioxidant and antibacterial activities of essentials oils obtained from Egyptian aromatic plants. Food Control 22:1715–1722CrossRefGoogle Scholar
  47. Yashphe J, Segal R, Breuer A, Erdreich-Naftali G (1979) Antibacterial activity of Artemisia herba-alba. J Pharm Sci 68(7):924–925CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Reda Meziani
    • 1
    Email author
  • Mouaad Amine Mazri
    • 2
  • Adil Essarioui
    • 3
  • Chakib Alem
    • 4
  • Ghizlane Diria
    • 5
  • Fatima Gaboun
    • 5
  • Hicham El Idrissy
    • 1
  • Mohamed Laaguidi
    • 1
  • Fatima Jaiti
    • 4
  1. 1.Institut National de la Recherche Agronomique, CRRA-Errachidia, UR Systèmes Oasiens, Laboratoire National de Culture des Tissus du Palmier DattierErrachidiaMorocco
  2. 2.Institut National de la Recherche Agronomique, CRRA-Marrakech, UR Agro-Biotechnologie, Laboratoire de Biotechnologie VégétaleMarrakechMorocco
  3. 3.Institut National de la Recherche Agronomique, CRRA-Errachidia, UR Systèmes Oasiens, Laboratoire de PhytopathologieErrachidiaMorocco
  4. 4.Université Moulay Ismail, Faculté des Sciences et TechniquesErrachidiaMorocco
  5. 5.Institut National de la Recherche Agronomique, CRRA-Rabat, UR BiotechnologieRabatMorocco

Personalised recommendations