Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 136, Issue 2, pp 365–372 | Cite as

Cold-conserved hybrid immature embryos for efficient wheat transformation

  • Robin MichardEmail author
  • Manon Batista
  • Marie-Claire Debote
  • Alain Loussert
  • Caroline Tassy
  • Pierre Barret
  • Giacomo Bastianelli
  • Alain Nicolas
  • Pierre SourdilleEmail author
Original Article


Transgenesis through biolistic of immature embryos is the most convenient way to introduce artificially new genes in bread wheat (Triticum aestivum L.). However, only a few genotypes can be efficiently transformed. To improve the transformation of wheat varieties, we stored immature seeds at room temperature or 4 °C during 4 or 7 days and extracted immature embryos prior to transformation. Shelling stops the embryo’s growth and almost all the embryos formed a callus on selective media when stored at 4 °C for 4 or 7 days (respectively 87% and 99%). We also used hybrid immature embryos derived from a cross between a transformable line (Courtot) and a non-transformable line (Chinese Spring) for biolistic transformation. Hybrid embryos showed the same response to biolistic than the responsive parent. All together, these results improve significantly the biolistic protocol for wheat transformation by reducing the number of mother plants in the greenhouse, and improve the transformation of additional genotypes through hybrid transformation.


Wheat Cold treatment Hybrids Transformation Biolistic 



Members of the team CPCC are greatly acknowledged for taking care of the plants. Members of the team ValFon are also acknowledged for helpful discussions and for providing with all facilities for biolistic transformation. RM is funded by ANRT CIFRE Grant No. 2014/1020.

Author contributions

RM, CT, MCD, AL and MB conducted the experiments; RM analyzed all data; RM, PB and PS conceived this work and wrote the paper. GB and AN reviewed the paper. All authors contributed in the writing of this paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11240_2018_1521_MOESM1_ESM.xlsx (15 kb)
Supplementary material 1 (XLSX 15 KB)
11240_2018_1521_MOESM2_ESM.pdf (295 kb)
Supplementary material 2 (PDF 294 KB)
11240_2018_1521_MOESM3_ESM.pdf (154 kb)
Supplementary material 3 (PDF 154 KB)


  1. Altpeter F, Springer NM, Bartley LE et al (2016) Advancing crop transformation in the era of genome editing. Plant Cell 28:1510–1520. Google Scholar
  2. Amer IB, Worland AJ, Korzun V, Börner A (1997) Genetic mapping of QTL controlling tissue-culture response on chromosome 2B of wheat (Triticum aestivum L.) in relation to major genes and RFLP markers. TAG Theor Appl Genet 94:1047–1052. CrossRefGoogle Scholar
  3. Bailey SF (1935) Thrips as vectors of plant disease. J Econ Entomol 28:856–863. CrossRefGoogle Scholar
  4. Birchler JA, Yao H, Chudalayandi S et al (2010) Heterosis. Plant Cell 22:2105–2112. CrossRefGoogle Scholar
  5. Bolibok H, Rakoczy-Trojanowska M (2006) Genetic mapping of QTLs for tissue-culture response in plants. Euphytica 149:73–83. CrossRefGoogle Scholar
  6. Breitler J-C, Labeyrie A, Meynard D et al (2002) Efficient microprojectile bombardment-mediated transformation of rice using gene cassettes. TAG Theor Appl Genet 104:709–719. CrossRefGoogle Scholar
  7. Carlos Popelka J, Altpeter F (2003) Agrobacterium tumefaciens-mediated genetic transformation of rye (Secale cereale L.). Mol Breed 11:203–211. CrossRefGoogle Scholar
  8. Cheng M, Fry JE, Pang S et al (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980. CrossRefGoogle Scholar
  9. Choulet F, Alberti A, Theil S et al (2014) Structural and functional partitioning of bread wheat chromosome 3B. Science 345:1249721. CrossRefGoogle Scholar
  10. Darrier B, Rimbert H, Balfourier F et al (2017) High-resolution mapping of crossover events in the hexaploid wheat genome suggests a universal recombination mechanism. Genetics 206:1373–1388. CrossRefGoogle Scholar
  11. Dennis ES, Peacock WJ (2009) Vernalization in cereals. J Biol 8:57. CrossRefGoogle Scholar
  12. Fábián A, Jäger K, Rakszegi M, Barnabás B (2011) Embryo and endosperm development in wheat (Triticum aestivum L.) kernels subjected to drought stress. Plant Cell Rep 30:551–563. CrossRefGoogle Scholar
  13. Fehér A (2015) Somatic embryogenesis—stress-induced remodeling of plant cell fate. Biochim Biophys Acta 1849:385–402. CrossRefGoogle Scholar
  14. Florentin A, Damri M, Grafi G (2013) Stress induces plant somatic cells to acquire some features of stem cells accompanied by selective chromatin reorganization. Dev Dyn 242:1121–1133. CrossRefGoogle Scholar
  15. Geard A, Spurr CJ, Brown PH (2007) Embryo development and time of cutting in cool temperate carrot seed crops. In: Adkins SW, Ashmore S, Navie SC (eds) Seeds: biology, development and ecology. Proceedings of the eighth international workshop on seeds. CABI, Wallingford, pp 120–129Google Scholar
  16. Golovina EA, Hoekstra FA, Van Aelst AC (2001) The competence to acquire cellular desiccation tolerance is independent of seed morphological development. J Exp Bot 52:1015–1027. CrossRefGoogle Scholar
  17. Grafi G, Barak S (2015) Stress induces cell dedifferentiation in plants. Biochim Biophys Acta 1849:378–384. CrossRefGoogle Scholar
  18. Gu HH, Hagberg P, Zhou WJ (2004) Cold pretreatment enhances microspore embryogenesis in oilseed rape (Brassica napus L.). Plant Growth Regul 42:137–143. CrossRefGoogle Scholar
  19. Hiei Y, Ishida Y, Komari T (2014) Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Front Plant Sci 5:628. CrossRefGoogle Scholar
  20. Hodges TK, Kamo KK, Imbrie CW, Becwar MR (1986) Genotype specificity of somatic embryogenesis and regeneration in maize. Nat Biotechnol 4:219–223. CrossRefGoogle Scholar
  21. International Wheat Genome Sequencing Consortium (IWGSC) (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788. CrossRefGoogle Scholar
  22. International Wheat Genome Sequencing Consortium (IWGSC) (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:7191. CrossRefGoogle Scholar
  23. Jia H, Yi D, Yu J et al (2007) Mapping QTLs for tissue culture response of mature wheat embryos. Mol Cells 23:323–330Google Scholar
  24. Jones HD (2005) Wheat transformation: current technology and applications to grain development and composition. J Cereal Sci 41:137–147. CrossRefGoogle Scholar
  25. Kim D, Alptekin B, Budak H (2018) CRISPR/Cas9 genome editing in wheat. Funct Integr Genomics 18:31–41. CrossRefGoogle Scholar
  26. Kiviharju E, Pehu E (1998) The effect of cold and heat pretreatments on anther culture response of Avena sativa and A. sterilis. Plant Cell Tissue Organ Cult 54:97–104. CrossRefGoogle Scholar
  27. Li B, Caswell K, Leung N, Chibbar RN (2003) Wheat (Triticum aestivum L.) somatic embryogenesis from isolated scutellum: days post anthesis, days of spike storage, and sucrose concentration affect efficiency. In Vitro Cell Dev Biol 39:20–23. CrossRefGoogle Scholar
  28. Liang Z, Chen K, Zhang Y et al (2018) Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nat Protoc 13:413–430. CrossRefGoogle Scholar
  29. Lublin A, Sela S (2008) The impact of temperature during the storage of table eggs on the viability of Salmonella enterica serovars enteritidis and virchow in the eggs. Poult Sci 87:2208–2214. CrossRefGoogle Scholar
  30. Luo J, Jiang S, Pan L (2003) Cold-enhanced somatic embryogenesis in cell suspension cultures of Astragalus adsurgens Pall.: relationship with exogenous calcium during cold pretreatment. Plant Growth Regul 40:171–177. CrossRefGoogle Scholar
  31. Machii H, Mizuno H, Hirabayashi T et al (1998) Screening wheat genotypes for high callus induction and regeneration capability from anther and immature embryo cultures. Plant Cell Tissue Organ Cult 53:67–74. CrossRefGoogle Scholar
  32. Malabadi RB, van Staden J (2006) Cold-enhanced somatic embryogenesis in Pinus patula is mediated by calcium. S Afr J Bot 72:613–618. CrossRefGoogle Scholar
  33. Montalbán IA, García-Mendiguren O, Goicoa T et al (2015) Cold storage of initial plant material affects positively somatic embryogenesis in Pinus radiata. New Forest 46:309–317. CrossRefGoogle Scholar
  34. Özgen M, Türet M, Altınok S, Sancak C (1998) Efficient callus induction and plant regeneration from mature embryo culture of winter wheat (Triticum aestivum L.) genotypes. Plant Cell Rep 18:331–335. CrossRefGoogle Scholar
  35. Pastori GM, Wilkinson MD, Steele SH et al (2001) Age-dependent transformation frequency in elite wheat varieties. J Exp Bot 52:857–863. CrossRefGoogle Scholar
  36. Pescitelli SM, Johnson CD, Petolino JF (1990) Isolated microspore culture of maize: effects of isolation technique, reduced temperature, and sucrose level. Plant Cell Rep 8:628–631. CrossRefGoogle Scholar
  37. Przetakiewicz A, Karaś A, Orczyk W, Nadolska-Orczyk A (2004) Agrobacterium-mediated transformation of polyploid cereals. The efficiency of selection and transgene expression in wheat. Cell Mol Biol Lett 9:903–917Google Scholar
  38. Rasco-Gaunt S, Riley A, Cannell M et al (2001) Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment. J Exp Bot 52:865–874. CrossRefGoogle Scholar
  39. Saintenac C, Falque M, Martin OC et al (2009) Detailed recombination studies along chromosome 3B provide new insights on crossover distribution in wheat (Triticum aestivum L.). Genetics 181:393–403. CrossRefGoogle Scholar
  40. Samarah NH (2005) Effects of drought stress on growth and yield of barley. Agron Sustain Dev 25:145–149. CrossRefGoogle Scholar
  41. Sánchez-León S, Gil-Humanes J, Ozuna CV et al (2018) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16:902–910. CrossRefGoogle Scholar
  42. Shrawat AK, Lörz H (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol J 4:575–603. CrossRefGoogle Scholar
  43. Stoykova P, Stoeva-Popova P (2011) PMI (manA) as a nonantibiotic selectable marker gene in plant biotechnology. Plant Cell Tissue Organ Cult 105:141–148. CrossRefGoogle Scholar
  44. Tassy C, Barret P (2017) Biolistic transformation of wheat. In: Bhalla P, Singh M (eds) Wheat biotechnology. Methods in molecular biology, vol 1679. Humana Press, New York, pp 141–152CrossRefGoogle Scholar
  45. Tassy C, Partier A, Beckert M et al (2014) Biolistic transformation of wheat: increased production of plants with simple insertions and heritable transgene expression. Plant Cell Tissue Organ Cult 119:171–181. CrossRefGoogle Scholar
  46. Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Nat Biotechnol 10:667–674. CrossRefGoogle Scholar
  47. Wang Y, Cheng X, Shan Q et al (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951. CrossRefGoogle Scholar
  48. Wright M, Dawson J, Dunder E et al (2001) Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep 20:429–436. CrossRefGoogle Scholar
  49. Yao Q, Cong L, He G et al (2007) Optimization of wheat co-transformation procedure with gene cassettes resulted in an improvement in transformation frequency. Mol Biol Rep 34:61–67. CrossRefGoogle Scholar
  50. Zhang K, Liu J, Zhang Y et al (2015) Biolistic genetic transformation of a wide range of Chinese elite wheat (Triticum aestivum L.) varieties. J Genet Genomics 42:39–42. CrossRefGoogle Scholar
  51. Zong Y, Wang Y, Li C et al (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35:438–440. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institut National de la Recherche Agronomique, Université Clermont Auvergne, Unité Mixte de Recherche 1095 Génétique Diversité Écophysiologie des CéréalesClermont-FerrandFrance
  2. 2.Centre de Biologie Intégrative, CNRS UMR 5100 Laboratoire de Microbiologie et de Génétique Moléculaire, Université Toulouse III Paul SabatierToulouseFrance
  3. 3.SAS Meiogenix FranceParisFrance
  4. 4.Institut Curie, CNRS UMR 3244, PSL Research University, Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations