Advertisement

Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 134, Issue 3, pp 491–502 | Cite as

Total phenolics, resveratrol content and antioxidant activity of seeds and calluses of pinto peanut (Arachis pintoi Krapov. & W.C. Greg.)

  • Isabela Brandão de Sousa-MachadoEmail author
  • Tayanne Felippe
  • Renata Garcia
  • Georgia Pacheco
  • Davyson Moreira
  • Elisabeth Mansur
Original Article

Abstract

Arachis pintoi is a peanut species native to Brazil, which is cultivated in many countries for animal forage, soil cover, landscaping, and recovery of degraded areas. Tissue culture studies for this species have been focused in plant production, whereas works on in vitro secondary metabolites production are scarce. The goal of the present work was to establish callus cultures from different seed explants of A. pintoi, aiming at evaluating the potential for metabolites production and antioxidant activity. Embryonic axes, leaflets, and cotyledons were cultured on solidified MS medium supplemented with picloram (PIC), 2,4-dichlorophenoxyacetic acid (2,4-D), thidiazuron (TDZ) or different combinations of 6-benzyladenine (BA) and α-naphthaleneacetic acid (NAA), under light or dark conditions. Friable calluses with a high biomass (4.3 ± 0.3 g FW per callus) were obtained from embryonic leaflets cultured on medium supplemented with 17.6 µM BA plus 5.4 µM NAA, in the dark. Cotyledons and embryonic axes cultured in the presence of 4.4 µM BA combined with 10.8 µM NAA formed heterogeneous calluses with a compact base and a large friable surface. Trans-resveratrol and other stilbenes that were not found in seeds were detected in callus extracts, especially those originated from cotyledons, although these materials showed lower total phenolic contents (TPC) when compared with seeds with and without testa, as well as cotyledons. Extracts from seeds with testa and from calluses derived from cotyledons and embryonic axes showed the highest EC50 in DPPH assays. No correlation between TPC, trans-resveratrol and antioxidant activity was observed.

Keywords

Phytoalexin Stilbenoids Auxin Cytokinin Seed explants Callogenesis 

Notes

Acknowledgements

The authors acknowledge the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) for financial support. Isabela B. de Sousa-Machado is a recipient of a scholarship from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). E. Mansur is a recipient of a research fellowship from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

References

  1. Adjolohoun S, Bindelle J, Adandedjan C, Toleba SS, Nonfon WR, Sinsin B (2013) Reproductive phrenology stages and their contributions to seed production of two Arachis pintoi ecotypes (CIAT 17434 and CIAT 18744) in Sudanian savanna region of Benin, West Africa. Agric Sci Res J 3(6):152–157Google Scholar
  2. Aljuhaimi F, Özcan MM (2018) Influence of oven and microwave roasting on bioproperties, phenolic compounds, fatty acid composition, and mineral contents of nongerminated peanut and germinated peanut kernel and oils. J Food Process Preserv 42(2):e13462CrossRefGoogle Scholar
  3. Attree R, Du B, Xu B (2015) Distribution of phenolic compounds in seed coat and cotyledon, and their contribution to antioxidant capacities of red and black seed coat peanuts (Arachis hypogaea L.). Ind Crops Prod 67:448–456.  https://doi.org/10.1016/j.indcrop.2015.01.080 CrossRefGoogle Scholar
  4. Aune D, Giovannucci E, Boffetta P, Fadnes LT, Keum NN, Norat T, Greenwood DC, Riboli E, Vatten LJ, Tonstad S (2017) Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol 46(3):1029–1056.  https://doi.org/10.1093/ije/dyw319 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baskaran P, Moyo M, Van Staden J (2014) In vitro plant regeneration, phenolic compound production and pharmacological activities of Coleonema pulchellum. S Afr J Bot 90:74–79CrossRefGoogle Scholar
  6. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30.  https://doi.org/10.1016/S0023-6438(95)80008-5 CrossRefGoogle Scholar
  7. Bresolin APS, Castro CM, Herter FG, Oliveira AC de, Carvalho FIF de, Pereira FB, Vieira CL, Bertoli RF (2008) Tolerância ao frio do amendoim forrageiro. Ciência Rural 38:1154–1157.  https://doi.org/10.1590/S0103-84782008000400041 CrossRefGoogle Scholar
  8. Burtnik O, Mroginski L (1985) Regeneracion de plantas de Arachis pintoi (Leguminosae) por cultivo in vitro de tejidos foliares. Oleagineux 40:609–611Google Scholar
  9. Carvalho MA, Quesenberry KH (2009) Morphological characterization of the USA Arachis pintoi Krap. and Greg. collection. Plant Syst Evol 277:1–11.  https://doi.org/10.1007/s00606-008-0089-9 CrossRefGoogle Scholar
  10. Casimiro GS, Mansur E, Pacheco G, Garcia R, Leal ICR, Simas NK (2017) Allelopathic activity of extracts from different brazilian Peanut (Arachis hypogaea L.) cultivars on lettuce (Lactuca sativa) and weed plants. Sci World J 2017:1–7.  https://doi.org/10.1155/2017/2796983 CrossRefGoogle Scholar
  11. Castro AHF, Braga KDQ, Sousa FMD, Coimbra MC, Chagas RCR (2016) Callus induction and bioactive phenolic compounds production from Byrsonima verbascifolia (L.) DC. (Malpighiaceae). Rev Cienc Agron 47(1):143–151CrossRefGoogle Scholar
  12. Coimbra MC, César R, Chagas R (2017) Influence of plant growth regulators and light on callus induction and bioactive phenolic compounds production in Pyrostegia venusta (Bignoniaceae). Indian J Exp Biol 55:584–590Google Scholar
  13. Condori J, Sivakumar G, Hubstenberger J, Dolan MC, Sobolev VS, Medina-Bolivar F (2010) Induced biosynthesis of resveratrol and the prenylated stilbenoids arachidin-1 and arachidin-3 in hairy root cultures of peanut: Effects of culture medium and growth stage. Plant Physiol Biochem 48:310–318.  https://doi.org/10.1016/j.plaphy.2010.01.008 CrossRefPubMedGoogle Scholar
  14. Fontana ML, Mroginski LA, Rey HY (2009) Organogenesis and plant regeneration of Arachis villosa Benth. (Leguminosae) through leaf culture. Biocell 33:179–186PubMedGoogle Scholar
  15. Francisco ML de, Resurreccion AVA (2009) Development of a reversed-phase high performance liquid chromatography (RP-HPLC) procedure for the simultaneous determination of phenolic compounds in peanut skin extracts. Food Chem 117:356–363.  https://doi.org/10.1016/j.foodchem.2009.03.110 CrossRefGoogle Scholar
  16. Garcia L, Garcia R, Pacheco G, Sutili F, Souza R de, Mansur E, Leal I (2016) Optimized extraction of Resveratrol from Arachis repens Handro by ultrasound and microwave: a correlation study with the antioxidant properties and phenol contents. Sci World J 2016:1–10.  https://doi.org/10.1155/2016/5890897 CrossRefGoogle Scholar
  17. Halder M, Jha S (2016) Enhanced trans-resveratrol production in genetically transformed root cultures of Peanut (Arachis hypogaea L.). Plant Cell Tiss Organ Cult 124:555–572CrossRefGoogle Scholar
  18. Holland KW, Balota M, Eigel WN III, Mallikarjunan P, Tanko JM, Zhou K, O’Keefe SF (2011) ORAChromatography and total phenolics content of peanut root extracts. J Food Sci 76:380–384.  https://doi.org/10.1111/j.1750-3841.2011.02069.x CrossRefGoogle Scholar
  19. Hsieh YF, Jain M, Wang J, Gallo M (2017) Direct organogenesis from cotyledonary node explants suitable for Agrobacterium-mediated transformation in peanut (Arachis hypogaea L.). Plant Cell Tiss Organ Cult 128:161–175CrossRefGoogle Scholar
  20. Iqbal MM, Nazir F, Iqbal J, Tehrim S, Zafar Y (2011) In vitro micropropagation of peanut (Arachis hypogaea) through direct somatic embryogenesis and callus culture. Int J Agric Biol 13:811–814Google Scholar
  21. Karalija E, Ćavar Zeljković S, Tarkowski P, Muratović E, Parić A (2017) The effect of cytokinins on growth, phenolics, antioxidant and antimicrobial potential in liquid agitated shoot cultures of Knautia sarajevensis. Plant Cell Tiss Organ Cult 131:347–357CrossRefGoogle Scholar
  22. Kim JS, Lee SY, Park SU (2008) Resveratrol production in hairy root culture of peanut, Arachis hypogaea L. transformed with different Agrobacterium rhizogenes strains. African J Biotechnol 7:3788–3790.  https://doi.org/10.5897/AJB08.499 CrossRefGoogle Scholar
  23. Krapovickas A, Gregory WC (1994) Taxonomia del genero Arachis. (Leguminosae) Bonplandia. Taxon 8:1–179Google Scholar
  24. Ku KL, Chang PS, Cheng YAC, Lien CYI (2005) Production of stilbenoids from the callus of Arachis hypogaea: A novel source of the anticancer compound piceatannol. J Agric Food Chem 53:3877–3881.  https://doi.org/10.1021/jf050242o CrossRefPubMedGoogle Scholar
  25. Ladeira MM, Rodriguez NM, Borges I, Gonçalves LC, de Oliveira Simões Saliba E, Corrêa Brito S, Pinto de Sá LA (2002) Avaliação do feno de Arachis pintoi utilizando o ensaio de digestibilidade in vivo. Rev Bras Zootec 31:2350–2356.  https://doi.org/10.1590/S1516-35982002000900025 CrossRefGoogle Scholar
  26. Lopes RM, Agostini-Costa T, da S, Gimenes, Silveira MA D (2011) Chemical composition and biological activities of Arachis species. J Agric Food Chem 59:4321–4330.  https://doi.org/10.1021/jf104663z CrossRefPubMedGoogle Scholar
  27. Lopes RM, Silveira D, Gimenes MA, Vasconcelos PAS, de Alves RBN, Silva JP, da Agostini-Costa TS (2013) Characterization of resveratrol content in ten wild species of section Arachis, genus Arachis. Genet Resour Crop Evol 60:2219–2226.  https://doi.org/10.1007/s10722-013-9987-y CrossRefGoogle Scholar
  28. Ma Y, Kosinska-Cagnazzo A, Kerr WL, Amarowicz R, Swanson RB, Pegg RB (2014) Separation and characterization of phenolic compounds from dry-blanched peanut skins by liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr A 1356:64–81.  https://doi.org/10.1016/j.chroma.2014.06.027 CrossRefPubMedGoogle Scholar
  29. Mallikarjuna G, Rao TSRB., Kirti PB (2016) Genetic Engineering for Peanut Improvement: Current Status and Prospects. Plant Cell Tiss Organ Cult 125:399–416CrossRefGoogle Scholar
  30. Marka R, Talari S, Penchala S, Rudroju S, Nann RS (2013) Preliminary phytochemical analysis of leaf, stem, root and seed extracts of Arachis hypogaea L. Int J Pharm Sci Rev Res 20(1):134–139Google Scholar
  31. Matand K, Wu N, Wu H, Tucker E, Love K (2013) More improved peanut (Arachis hypogaea L.) protocol for direct shoot organogenesis in mature dry-cotyledonary and root tissues. J Biotech Res 5:24–34Google Scholar
  32. Medina-Bolivar F, Condori J, Rimando AM, Hubstenberger J, Shelton K, O’Keefe SF, Bennett S, Dolan MC (2007) Production and secretion of resveratrol in hairy root cultures of peanut. Phytochemistry 68:1992–2003.  https://doi.org/10.1016/j.phytochem.2007.04.039 CrossRefPubMedGoogle Scholar
  33. Mohlakola EM, Cheng C, Lin Y, Guo R, Min KT, Chen Y, Lai Z (2017) Effects of 2,4-dichlorophenoxy acetic acid and light on growth of gerbera (Gerbera jamesonii cv. Daxueju) callus. J Agr Sci Tech 18(3):385–393Google Scholar
  34. Mroginski E, Rey HY, Gonzalez AM, Mroginski LA (2004) Thidiazuron promotes in vitro plant regeneration of Arachis correntina (Leguminosae) via organogenesis. J Plant Growth Regul 23:129–134.  https://doi.org/10.1007/s00344-004-0038-y CrossRefGoogle Scholar
  35. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497.  https://doi.org/10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  36. Olgunsoy P, Ulusoy S, Akçay U (2017) Metabolite production and antibacterial activities of callus cultures from Rosa damascena Mill. petals. J Res Pharm 21(3):590–597.  https://doi.org/10.12991/marupj.319331 CrossRefGoogle Scholar
  37. Pacheco G, Gagliardi RF, Carneiro LA, Callado CH, Valls JFM, Mansur E (2007) The role of BAP in somatic embryogenesis induction from seed explants of Arachis species from Sections Erectoides and Procumbentes. Plant Cell Tissue Organ Cult 88:121–126.  https://doi.org/10.1007/s11240-006-9169-0 CrossRefGoogle Scholar
  38. Pacheco G, Gagliardi RF, Valls JFM, Mansur E (2009) Micropropagation and in vitro conservation of wild Arachis species. Plant Cell Tiss Organ Cult 99:239–249.  https://doi.org/10.1007/s11240-009-9599-6 CrossRefGoogle Scholar
  39. Pilaisangsuree V, Somboon T, Tonglairoum P, Keawracha P, Wongsa T, Kongbangkerd A, Limmongkon A (2018) Enhancement of stilbene compounds and anti-inflammatory activity of methyl jasmonate and cyclodextrin elicited peanut hairy root culture. Plant Cell Tiss Organ Cult 132:165–179CrossRefGoogle Scholar
  40. Pittman RN, Banks DJ, Kirby JS, Mitchell ED, Richardson PE (1983) In vitro culture of immature peanut (Arachis spp.) leaves: Morphogenesis and plantlet regeneration. Peanut Sci 10:21–25.  https://doi.org/10.3146/i0095-3679-10-1-7 CrossRefGoogle Scholar
  41. Poeaim A, Poeaim S, Pongtongkam P (2015) Callus induction and cell suspension cultures of Rhizome Peanut (Arachis glabrata) cultivars: arbrook. J Agric Technol 11(8):2481–2488Google Scholar
  42. Rey HY, Mroginski LA (2003) Regeneration of plants from apical meristem tips and nodal segments of Arachis pintoi. Peanut Sci 30:75–79CrossRefGoogle Scholar
  43. Rey HY, Mroginski LA (2006) Somatic embryogenesis and plant regeneration in diploid and triploid Arachis pintoi. Biol Plant 50:152–155.  https://doi.org/10.1007/s10535-005-0093-7 CrossRefGoogle Scholar
  44. Rey HY, Scocchi AM, Gonzalez AM, Miroginski LA (2000) Plant regeneration in Arachis pintoi (Leguminosae) through leaf culture. Plant Cell Rep 19:856–862.  https://doi.org/10.1007/s002990000198 CrossRefGoogle Scholar
  45. Sang SY, Jamharee F, Prasad KN, Azlan A, Maliki N (2014) Influence of drying treatments on antioxidant capacity of forage legume leaves. J Food Sci Technol 51:988–993CrossRefPubMedGoogle Scholar
  46. Santana SH, Valls JFM (2015) Arachis veigae (Fabaceae), the most dispersed wild species of the genus, and yet taxonomically overlooked. Bonplandia 24:139–150Google Scholar
  47. Silva SC, Martins MIG, Santos RC, Peñaloza APS, Filho PAM, Benko-Iseppon AM, Valls JFM, Carvalho R (2010) Karyological features and banding patterns in Arachis species belonging to the Heteranthae section. Plant Syst Evol 285:201–207.  https://doi.org/10.1007/s00606-010-0278-1 CrossRefGoogle Scholar
  48. Sobolev VS (2013) Production of phytoalexins in peanut (Arachis hypogaea) seed elicited by selected microorganisms. J Agric Food Chem 61:1850–1858.  https://doi.org/10.1021/jf3054752 CrossRefPubMedGoogle Scholar
  49. Srinivasan T, Kumar KRR, Kirti PB (2010) Establishment of efficient and rapid regeneration system for some diploid wild species of Arachis. Plant Cell Tiss Organ Cult 101:303–309.  https://doi.org/10.1007/s11240-010-9689-5 CrossRefGoogle Scholar
  50. Tyunin AP, Kiselev KV (2016) Alternations in VaSTS gene cytosine methylation and t-resveratrol production in response to UV-C irradiation in Vitis amurensis Rupr. Cells. Plant Cell Tiss Organ Cult 124:33–45.  https://doi.org/10.1007/s11240-015-0872-6 CrossRefGoogle Scholar
  51. Wang KH, Lai YH, Chang JC, Ko TF, Shyu SL, Chiou RYY (2005) Germination of peanut kernels to enhance resveratrol biosynthesis and prepare sprouts as a functional vegetable. J Agric Food Chem 53(2):242–246.  https://doi.org/10.1021/jf048804b CrossRefPubMedGoogle Scholar
  52. Xu A, Zhan J-C, Huang W-D (2015) Effects of ultraviolet C, methyl jasmonate and salicylic acid, alone or in combination, on stilbene biosynthesis in cell suspension cultures of Vitis vinifera L. cv. Cabernet Sauvignon. Plant Cell Tiss Organ Cult 122:197–211CrossRefGoogle Scholar
  53. Yang MH, Kuo CH, Hsieh WC, Ku KL (2010a) Investigation of microbial elicitation of trans-resveratrol and trans-piceatannol in peanut callus led to the application of chitin as a potential elicitor. J Agric Food Chem 58:9537–9541.  https://doi.org/10.1021/jf1022725 CrossRefPubMedGoogle Scholar
  54. Yang MH, Lin YJ, Kuo CH, Ku KL (2010b) Medicinal mushroom Ganoderma lucidum as a potent elicitor in production of t-resveratrol and t-piceatannol in peanut calluses. J Agric Food Chem 58:9518–9522.  https://doi.org/10.1021/jf102107p CrossRefPubMedGoogle Scholar
  55. Yu J, Ahmedna M, Goktepe I (2005) Effects of processing methods and extraction solvents on concentration and antioxidant activity of peanut skin phenolics. Food Chem 90:199–206.  https://doi.org/10.1016/j.foodchem.2004.03.048 CrossRefGoogle Scholar
  56. Zorzete P, Reis TA, Felício JD, Baquião AC, Makimoto P, Corrêa B (2011) Fungi, mycotoxins and phytoalexin in peanut varieties, during plant growth in the field. Food chem 129(3):957–964CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Isabela Brandão de Sousa-Machado
    • 1
    Email author
  • Tayanne Felippe
    • 1
  • Renata Garcia
    • 1
  • Georgia Pacheco
    • 1
  • Davyson Moreira
    • 2
  • Elisabeth Mansur
    • 1
  1. 1.Instituto de Biologia Roberto Alcantara Gomes, Núcleo de Biotecnologia Vegetal, Rua São Francisco Xavier 524 PHLC sala 505, MaracanãUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto de Tecnologia em FármacosFundação Oswaldo CruzRio de JaneiroBrazil

Personalised recommendations