Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 134, Issue 2, pp 251–265 | Cite as

Quantitative profiling of polyacetylenes in tissue cultures and plant parts of three species of the Asteraceae

  • Nargis F. A. Elgahme
  • Ute Wittstock
Original Article


Polyacetylenes are a group of fatty-acid derived specialized metabolites with several C–C-triple bonds and derived compounds which are widely distributed in the plant kingdom, but are especially abundant and structurally diverse in the Asteraceae family. Despite their interesting structural and biological properties, the biosynthesis of polyacetylenes is only poorly understood. We have used three species of the Asteraceae (Carthamus tinctorius, Tagetes patula, and Arctium lappa) to compare their suitability for studies of polyacetylene biosynthesis when used after cultivation on soil or as tissue culture. The polyacetylene profiles detected in different plant parts together with information from the literature indicate that C. tinctorius seedlings and flowers as well as T. patula roots and flower buds are major sites of polyacetylene biosynthesis. Highest levels of polyacetylenes were detected in T. patula [about 30 µmol/g dry weight (d.w.) thiophenes in roots] while A. lappa contained less than 1 µmol/g d.w.. Methyljasmonate (MeJ)-induced T. patula hairy root cultures proved to be an excellent source of butenynyl-bithiophene (200 µmol/g d.w., 43 mg/g d.w.) while T. patula flower buds could serve as a source of pentenynyl-bithiophene and α-terthienyl (5–10 µmol/g d.w.) and C. tinctorius flowers or seedlings as a source of polyacetylenic C13 hydrocarbons, the biosynthetic precursors of thiophenes (5–10 µmol/g d.w.). Upon addition of elicitors to tissue cultures, highest elicitation factors (between four and seven) were reached for 1,11-tridecadiene-3,5,7,9-tetrayne in C. tinctorius cell suspension cultures with 40 µM MeJ and α-terthienyl in T. patula hairy root cultures with 100 µM MeJ.


Carthamus tinctorius Tagetes patula Arctium lappa Thiophenes α-Terthienyl 1,11-Tridecadiene-3,5,7,9-tetrayne 



Dr. Till Beuerle is thanked for advice on compound identification and quantification by GC. Financial support of N.F.A.E. by a PhD Fellowship of the Libyan Government is gratefully acknowledged.

Author contributions

N.F.A.E. designed and performed experiments and analyzed data. U.W. conceived the study with contributions from N.F.A.E., discussed results, and wrote the manuscript based on a draft prepared by N.F.A.E.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11240_2018_1417_MOESM1_ESM.pdf (389 kb)
Supplementary material 1 (PDF 389 KB)


  1. Allen EH, Thomas CA (1971) Transtrans-3,11-tridecadiene-5,7,9-triyne-1,2-diol, an antifungal polyacetylene from diseased safflower (Carthamus tinctorius). Phytochemistry 10:1579–1582CrossRefGoogle Scholar
  2. Anet E, Lythgoe B, Silk MH, Trippett S (1953) Oenanthotoxin and cicutoxin. Isolation and structures. J Chem Soc 62:309–322CrossRefGoogle Scholar
  3. Arnason T, Swain T, Wat CK, Graham EA, Partington S, Towers GHN, Lam J (1981) Mosquito larvicidal activity of polyacetylenes from species in the Asteraceae. Biochem Syst Ecol 9:63–68CrossRefGoogle Scholar
  4. Arroo RRJ et al (1995) Thiophene interconversions in Tagetes patula hairy-root cultures. Phytochemistry 38:1193–1197CrossRefGoogle Scholar
  5. Bernard F, Hassanpour A, Gholizadeh G, Hassannejad S, Chaghari Z (2011) High yellow pigments production by root culture of Carthamus tinctorius and its release in medium under gas oil treatment. Acta Physiol Plant 33:431–436. CrossRefGoogle Scholar
  6. Binder RG, Benson ME, Flath RA (1990a) Volatile components of safflower. J Agric Food Chem 38:1245–1248CrossRefGoogle Scholar
  7. Binder RG, Turner CE, Flath RA (1990b) Comparison of yellow starthistle volatiles from different plant parts. J Agric Food Chem 38:764–767. CrossRefGoogle Scholar
  8. Blacklock BJ, Scheffler BE, Shepard MR, Jayasuriya N, Minto RE (2010) Functional diversity in fungal fatty acid synthesis: the first acetylenase from the pacific golden chanterelle, Cantharellus formosus. J Biol Chem 285:28442–28449CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bohlmann F, Mannhardt HJ (1957) Acetylenverbindungen im Pflanzenreich. In: Zechmeister L (ed) Fortschritte der Chemie Organischer Naturstoffe. Springer, Wien, p 1–70Google Scholar
  10. Bohlmann F, Köhn S, Arndt C (1966) Polyacetylenverbindungen, CXIV: Die Polyine der Gattung Carthamus L. Chem Ber 99:3433–3436CrossRefGoogle Scholar
  11. Bohlmann F, Grenz M, Wotschokowsky M, Berger E (1967) Polyacetylenverbindungen, CXXXIV: Über neue Thiophenacetylenverbindungen. Chem Ber 100:2518–2522CrossRefGoogle Scholar
  12. Bohlmann F, Burkhardt T, Zdero C (1973) Naturally occurring acetylenes. Academic, LondonGoogle Scholar
  13. Bu’Lock JD, Smith GN (1967) The origin of naturally-occurring acetylenes. J Chem Soc (C). CrossRefGoogle Scholar
  14. Cahoon EB, Schnurr JA, Huffman EA, Minto RE (2003) Fungal responsive fatty acid acetylenases occur widely in evolutionarily distant plant families. Plant J 34:671–683CrossRefPubMedGoogle Scholar
  15. Carlsson AS, Thomaeus S, Hamberg M, Stymne S (2004) Properties of two multifunctional plant fatty acid acetylenase/desaturase enzymes. Eur J Biochem 271:2991–2997CrossRefPubMedGoogle Scholar
  16. Croes AF, van den Berg AJ, Bosveld M, Breteler H, Wullems GJ (1989) Thiophene accumulation in relation to morphology in roots of Tagetes patula: effects of auxin and transformation by Agrobacterium. Planta 179:43–50. CrossRefPubMedGoogle Scholar
  17. Croes AF, Jacobs JJ, Arroo RR, Wullems GJ (1994) Thiophene biosynthesis in Tagetes roots: molecular versus metabolic regulation. Plant Cell Tissue Organ Cult 38:159–165CrossRefGoogle Scholar
  18. de Wit PJGM, Kodde E (1981) Induction of polyacetylenic phytoalexins in Lycopersicon esculentum after inoculation with Cladosporium fulvum (syn. Fulvia fulva). Physiol Plant Pathol 18:143–148. CrossRefGoogle Scholar
  19. Downum KR, Towers GHN (1983) Analysis of thiophenes in the Tageteae (Asteraceae) by HPLC. J Nat Prod 46:98–103. CrossRefGoogle Scholar
  20. Gamborg OL, Murashige T, Thorpe TA, Vasil IK (1976) Plant tissue culture media. In Vitro Cell Dev Biol Plant 12:473–478CrossRefGoogle Scholar
  21. Gao WY, Fan L, Paek KY (2000) Yellow and red pigment production by cell cultures of Carthamus tinctorius in a bioreactor. Plant Cell Tissue Organ Cult 60:95–100CrossRefGoogle Scholar
  22. Greger H (2015) Alkamides: a critical reconsideration of a multifunctional class of unsaturated fatty acid amides. Phytochem Rev 15:729–770CrossRefGoogle Scholar
  23. Haritos VS, Horne I, Damcevski K, Glover K, Gibb N, Okada S, Hamberg M (2012) The convergent evolution of defensive polyacetylenic fatty acid biosynthesis genes in soldier beetles. Nat Commun 3:1150. CrossRefPubMedGoogle Scholar
  24. He WT, Hou SW, Wang CY (2006) Callus induction and high-frequency plant regeneration from hypocotyl and cotyledon explants of Arctium lappa L. In Vitro Cell Dev Biol Plant 42:411–414CrossRefGoogle Scholar
  25. Hjortso M, Mukundan U (1994) Genetic transformation in Tagetes species (marigolds) for thiophene contents. In: Bajaj YPS (ed) Plant protoplasts and genetic engineering V. Biotechnology in agriculture and forestry, vol 29. Springer, Berlin, p 365–382.
  26. Hinds L, Kenny O, Hossain MB, Walsh D, Sheehy E, Evans P, Gaffney M, Rai DK (2017) Evaluating the antibacterial properties of polyacetylene and glucosinolate compounds with further identification of their presence within various carrot (Daucus carota) and broccoli (Brassica oleracea) cultivars using high-performance liquid chromatography with a diode array detector and ultra performance liquid chromatography–tandem mass spectrometry analyses. J Agric Food Chem 65:7186–7191CrossRefPubMedGoogle Scholar
  27. Hudson JB (1989) Plant photosensitizers with antiviral properties. Antiviral Res 12:55–74CrossRefPubMedGoogle Scholar
  28. Hudson JB, Graham EA, Rossi R, Carpita A, Neri D, Towers GH (1993) Biological activities of terthiophenes and polyynes from the Asteraceae. Planta Med 59:447–450CrossRefPubMedGoogle Scholar
  29. Ichihara KI, Noda M (1975) Polyacetylenes from immature seeds of safflower (Carthamus tinctorius L.). Agric Biol Chem 39:1103–1108Google Scholar
  30. Ichihara KI, Noda M (1977) Distribution and metabolism of polyacetylenes in safflower. Biochim Biophys Acta 487:249–260CrossRefPubMedGoogle Scholar
  31. Jacobs JJ, Engelberts A, Croes AF, Wullems GJ (1994) Thiophene synthesis and distribution in young developing plants of Tagetes patula and Tagetes erecta. J Exp Bot 45:1459–1466CrossRefGoogle Scholar
  32. Jacobs JJ, Arroo RR, De Koning E, Klunder AJ, Croes AF, Wullems GJ (1995a) lsolation and characterization of mutants of thiophene synthesis in Tagetes erecta. Plant Physiol 107:807–814CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jacobs JJMR, Stalman M, Croes AF, Wullems GJ (1995b) Thiophene bioconversions in Tagetes protoplasts. Plant Sci 104:139–145CrossRefGoogle Scholar
  34. Keil M, Härtle B, Guillaume A, Psiorz M (2000) Production of amarogentin in root cultures of Swertia chirata. Planta Med 66:452–457CrossRefPubMedGoogle Scholar
  35. Kirsch C, Hahlbrock K, Somssich IE (1997) Rapid and transient induction of a parsley microsomal ∆12-fatty acid desaturase mRNA by fungal elicitor. Plant Physiol 115:283–289CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kizil S, Çakmak Ö, Kirici S, Inan M (2008) A comprehensive study on safflower (Carthamus tinctorius L.) in semi-arid conditions. Biotechnol Biotechnol Equip 22:947–953CrossRefGoogle Scholar
  37. Konovalov D (2014) Polyacetylene compounds of plants of the Asteraceae family. Pharm Chem J 48:613–631CrossRefGoogle Scholar
  38. Lee M et al (1998) Identification of non-heme diiron proteins that catalyze triple bond and epoxy group formation. Science 280:915–918CrossRefPubMedGoogle Scholar
  39. Margl L, Tei A, Gyurjan I, Wink M (2002) GLC and GLC–MS analysis of thiophene derivatives in plants and in in vitro cultures of Tagetes patula L. (Asteraceae). Z Naturforsch C 57:63–71CrossRefPubMedGoogle Scholar
  40. Marotti I, Marotti M, Piccaglia R, Nastri A, Grandi S, Dinelli G (2010) Thiophene occurrence in different Tagetes species: agricultural biomasses as sources of biocidal substances. J Sci Food Agric 90:1210–1217. CrossRefPubMedGoogle Scholar
  41. Menelaou MA et al (1991) NMR spectral data of benzofurans and bithiophenes from hairy root cultures of Tagetes patula and the molecular structure of isoeuparin. Spectrosc Lett 24:1405–1413. CrossRefGoogle Scholar
  42. Metschulat G, Sütfeld R (1987) Acetyl-CoA:4-hydroxybutinylbi-thiophene O-acetyl transferase isoenzymes from Tagetes patula seedlings. Z Naturforsch C 42:885–890CrossRefGoogle Scholar
  43. Minto RE, Blacklock BJ (2008) Biosynthesis and function of polyacetylenes and allied natural products. Prog Lipid Res 47:233–306. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Móricz ÁM, Ott PG, Morlock GE (2018) Discovered acetylcholinesterase inhibition and antibacterial activity of polyacetylenes in tansy root extract via effect-directed chromatographic fingerprints. J Chromatogr A 1543:73–80CrossRefPubMedGoogle Scholar
  45. Mukundan U, Hjortso MA (1990) Thiophene content in normal and transformed root cultures of Tagetes erecta: a comparison with thiophene content in roots of intact plants. J Exp Bot 41:1497–1501CrossRefGoogle Scholar
  46. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  47. Murti K, Panchal MA, Gajera V, Solanki J (2012) Pharmacological properties of Matricaria recutita: a review. Pharmacologia 3:348–351CrossRefGoogle Scholar
  48. Nakada H, Kobayashi A, Yamashita K (1977) Stereochemistry and biological activity of phytoalexin “safynol” from safflower. Agric Biol Chem 41:1761–1765Google Scholar
  49. Offringa IA, Melchers LS, Regensburg-Tuink AJG, Costantino P, Schilperoort RA, Hooykaas PJJ (1986) Complementation of Agrobacterium tumefaciens tumor-inducing aux mutants by genes from the T(R)-region of the Ri plasmid of Agrobacterium rhizogenes. Proc Natl Acad Sci USA 83:6935–6939CrossRefPubMedGoogle Scholar
  50. Pitta-Alvarez SI, Giulietti AM (1999) Influence of chitosan, acetic acid and citric acid on growth and tropane alkaloid production in transformed roots of Brugmansia candida: effect of medium pH and growth phase. Plant Cell Tissue Organ Cult 59:31–38. CrossRefGoogle Scholar
  51. Rajasekaran T, Madhusudan R, Ravishankar GA (1999) Elicitation of thiophene production by cultured hairy roots of Tagetes patula. Acta Physiol Plant 21:243–247CrossRefGoogle Scholar
  52. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  53. Scanlon JT, Willis DE (1985) Calculation of flame ionization detector response factors using the effective carbon number concept. J Chromatogr Sci 23:333–340CrossRefGoogle Scholar
  54. Schulte KE (1978) Occurence of polyacetylenes—chemistry and biosynthesis. Korean J Pharmacogn 9:11–32Google Scholar
  55. Schulte KE, Rücker G, Boehme R (1967) Polyacetylene als Inhaltsstoffe der Klettenwurzeln. Arzneimittelforschung 17:829–833PubMedGoogle Scholar
  56. Šejvčík J (1976) Detectors in gas chromatography. Journal of Chromatography Library, vol 4. Elsevier, AmsterdamGoogle Scholar
  57. Sperling P, Lee M, Girke T, Zähringer U, Stymne S, Heinz E (2000) A bifunctional ∆6-fatty acyl acetylenase/desaturase from the moss Ceratodon purpureus. Eur J Biochem 267:3801–3811CrossRefPubMedGoogle Scholar
  58. Sütfeld R (1982) Distribution of thiophene derivatives in different organs of Tagetes patula seedlings grown under various conditions. Planta 156:536–540CrossRefPubMedGoogle Scholar
  59. Sütfeld R, Towers GHN (1982) 5-(4-Acetoxy-1-butinyl)-2,2′-bithiophene:acetate esterase from Tagetes patula. Phytochemistry 21:277–279CrossRefGoogle Scholar
  60. Szarka S, Héthelyi É, Lemberkovics É, Kuzovkina IN, Bányai P, Szőke É (2006) GC and GC–MS studies on the essential oil and thiophenes from Tagetes patula L. Chromatographia 63:S67–S73. CrossRefGoogle Scholar
  61. Takasugi M, Kawashima S, Katsui N, Shirata A (1987) Two polyacetylenic phytoalexins from Arctium lappa. Phytochemistry 26:2957–2958. CrossRefGoogle Scholar
  62. Tietjen KG, Matern U (1984) Induction and suppression of phytoalexin biosynthesis in cultured cells of safflower, Carthamus tinctorius L., by metabolites of Alternaria carthami Chowdhury. Arch Biochem Biophys 229:136–144CrossRefPubMedGoogle Scholar
  63. Tosi B, Donini A, Bonora A, Bruni A (1988) Accumulation and distribution of thiophenes in Tagetes patula. Pharmacol Res Commun 20:117–121. CrossRefPubMedGoogle Scholar
  64. Washino T, Yoshikura M, Obata S (1986) New sulfur-containing acetylenic compounds from Arctium lappa. Agric Biol Chem 50:263–269Google Scholar
  65. Zhang Z, Guo SS, Zhang WJ, Geng ZF, Liang JY, Du SS, Wang CF, Deng ZW (2017) Essential oil and polyacetylenes from Artemisia ordosica and their bioactivities against Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). Ind Crop Prod 100:132–137CrossRefGoogle Scholar
  66. Zhou Y-Z, Ma H-Y, Chen H, Qiao L, Yao Y, Cao J-Q, Pei Y-H (2006) New acetylenic glucosides from Carthamus tinctorius. Chem Pharm Bull 54:1455–1456CrossRefPubMedGoogle Scholar
  67. Zhu X, Liu J, Zhang W (2015) De novo biosynthesis of terminal alkyne-labeled natural products. Nat Chem Biol 11:115–120CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Pharmaceutical BiologyTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations