Advertisement

Active compounds and anti-inflammatory activity of the methanolic extracts of the leaves and callus from Tilia americana var. mexicana propagated plants

  • Karen Flores-Sánchez
  • Francisco Cruz-Sosa
  • Alejandro Zamilpa-Alvarez
  • Pilar Nicasio-TorresEmail author
Original Article
  • 36 Downloads

Abstract

Tilia americana var. mexicana is used in Mexican traditional medicine to treat anxiety and inflammatory processes. Several glycosides derived from quercetin and kaempferol, including tiliroside, isoquercetin, and quercetin-3-β-d-glucoside, were reported as the main anxiolytic compounds in this species; to our knowledge, compounds with anti-inflammatory effects have not been previously described. In this study, whole plants were obtained from rooted cuttings with indole-3-butyric acid (IBA) under greenhouse conditions. Multiple shoots and callus cultures were established from apical and axillary buds from T. americana var. mexicana cuttings. The apical buds (75%) were the best explant for shoot induction (2–3 shoots per explant) on Murashige and Skoog (MS) medium supplemented with 2.0 mg L−1 of 6-benzyl aminopurine plus 0.25 mg L−1 α-naphthaleneacetic acid. Callogenesis occurred in both types of buds in the treatments constituted by thidiazuron with 0.1 mg L−1 IBA. High-performance liquid chromatography analysis of leaves and callus methanolic extracts allowed the identification of quercetin-3-β-d-glucoside and tiliroside anxiolytic compounds, and of the scopoletin anti-inflammatory compound. The methanolic leaf and callus extracts showed anti-inflammatory activities in a 12-O-tetradecanoylphorbol-13-acetate-induced ear edema model with median effective doses (ED50) of 0.38 and 1.73 mg per ear for the leaf and callus extracts, respectively.

Keywords

Anti-inflammatories Anxiolytics Propagation Quercetin-3-β-d-glucoside Scopoletin Tiliroside 

Abbreviations

BAP

6-Benzyl amino-9-(2-tetrahydropyranyl)-9H-purine

IBA

Indole-3-butyric acid

BA

6-Benzyl aminopurine

KIN

Kinetin

MS

Murashige and Skoog

NAA

α-Naphthaleneacetic acid

PVPP

Polyvinylpolypyrrolidone

TDZ

Thidiazuron

TPA

12-O-Tetradecanoylphorbol-13-acetate

2,4-D

2,4-Dichlorophenoxyacetic acid

Notes

Acknowledgements

This work was supported by Basic Grant 593703 from the Consejo Nacional de Ciencia y Tecnología, México (CONACyT-México) for the Doctoral studies of Karen Flores-Sánchez at the Biotechnology Doctoral Program of UAM-Iztapalapa; and by Complementary Grant 99182548 from the IMSS.

Author contributions

As a Ph.D. student, KF-S participated in all of the experimental work, in the collection, analysis, and interpretation of data, and in the writing of the manuscript. FC-S supervised the establishment of the factorial design experiments, provided the scopoletin, quercetin-3-β-d-glucoside, and tiliroside standards, and was the Thesis Co-Director of KF-S. A-Z participated in the extraction and in establishment of analytical methods for the quantification of compounds. PN-T performed the supervision of the establishment of in-vitro cultures and the evaluation of anti-inflammatory activity, and also was the Thesis Co-director of KF-S, participating in the writing of the manuscript and approving the final version of the manuscript to be submitted.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aguirre-Hernández E, Martínez AL, González-Trujano ME, Moreno J, Vibrans H, Soto-Hernández M (2007) Pharmacological evaluation of the anxiolytic and sedative effects of Tilia americana L. var. mexicana in mice. J Ethnopharmacol 109:140–145.  https://doi.org/10.1016/j.jep.2006.07.017 CrossRefGoogle Scholar
  2. Aguirre-Hernández E, González-Trujano ME, Martínez AL, Moreno J, Kite G, Terrazas T, Soto-Hernández M (2010) HPLC/MS analysis and anxiolytic-like effect of quercetin and kaempferol flavonoids from Tilia americana var. mexicana. J Ethnopharmacol 127:91–97.  https://doi.org/10.1016/j.jep.2009.09.044 CrossRefGoogle Scholar
  3. Aguirre-Hernández E, González-Trujano ME, Terrazas T, Herrera-Santoyo J, Guevara-Fefer P (2016) Anxiolytic and sedative-like effects of flavonoids from Tilia americana var. mexicana: GABAergic and serotonergic participation. Salud Mental 39(1):37–46.  https://doi.org/10.17711/SM.0185-3325.2015.066 CrossRefGoogle Scholar
  4. Borges GM, Estrada AE, Pérez RI, Meneses RS (2009) Uso de distintos tratamientos de desinfección en el cultivo in vitro de Dioscorea alata L. clon caraqueño. Rev Colomb Biotecnol 11(2):127–135.  https://doi.org/10.15446/rev.colomb.biote Google Scholar
  5. Cárdenas-Rodríguez N, González-Trujano ME, Aguirre-Hernández E, Ruiz-García M, Sampieri A, Coballase-Urrútia E, Carmona-Aparicio L (2014) Anticonvulsant and antioxidant effects of Tilia americana var. mexicana and flavonoids constituents in the Pentylenetetrazole induced seizures. Oxid Med Cell Longev. 2014: 1–10.  https://doi.org/10.1155/2014/329172 Google Scholar
  6. Chalupa V (2003) In vitro propagation of Tilia platyphyllos by axillary shoot proliferation and somatic embryogenesis. J For Sci 49(12):537–543.  https://doi.org/10.17221/4722JFS CrossRefGoogle Scholar
  7. Coste A, Halmagyi A, Butiuc-Keul AL, Daliu C, Coldea G, Hurdu B (2012) In vitro propagation and cryopreservation of Romanian endemic and rare Hypericum species. Plant Cell Tissue Organ Cult 110(2):213–226.  https://doi.org/10.1007/s11230-012-0144-7 CrossRefGoogle Scholar
  8. Figueiredo AC, Barroso JG, Pedro LG, Scheffer JJC (2008) Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragr J 23(4):213–226.  https://doi.org/10.1002/ffj.1875 CrossRefGoogle Scholar
  9. Flores-Olvera MH, Lindig-Cisneros R (2005) Listado de nombres vulgares y botánicos de árboles y arbustos propicios para repoblar los bosques de la República de Fernando Altamirano y José Ramírez a más de 110 años de su publicación. Rev Mex Biodiversidad 76:11–35.  https://doi.org/10.22201/ib.20078706e.2005.001.362 Google Scholar
  10. García-Rodríguez RV, Chamorro-Cevallos G, Siordia G, Jiménez-Arellanes MA, Chávez-Soto MA, Meckes-Fischer M (2012) Sphaeralcea angustifolia (Cav.) G. Don extract, a potential phytomedicine to treat chronic inflammation. Bol Latinoam Caribe Plant Med Aromat 11:454–463Google Scholar
  11. Herrera-Ruiz M, Román-Ramos R, Zamilpa A, Tortoriello J, Jiménez-Ferrer JE (2008) Flavonoids from Tilia americana with anxiolytic activity in plus maze test. J Ethnopharmacol 118:312–317.  https://doi.org/10.1016/j.jep.2008.04.019 CrossRefGoogle Scholar
  12. Kim TD, Choi YE, Lee BS, Kim YJ, Kim TS, Kim IS (2006) Micropropagation of Tilia amurensis via repetitive secondary somatic embryogenesis. Plant Biotechnol J 33(4):243–248.  https://doi.org/10.5010/JPB.2006.33.4.243 CrossRefGoogle Scholar
  13. Martínez M (1969) Las Plantas Medicinales de México. Botas, Mexico, p 317Google Scholar
  14. Martínez M, Matuda E (1979) Flora del estado de México. Tomo III. Ed. Biblioteca Enciclopédica del Estado de México, México, p 495Google Scholar
  15. Martínez AL, González-Trujano E, Aguirre-Hernández E, Moreno J, Soto-Hernández M, López-Muñoz J (2009) Antinociceptive activity of Tilia americana var. Mexicana inflorescences and quercetin in the formalin test and in an arthritic pain model in rats. Neuropharmacology 55:564–571.  https://doi.org/10.1016/j.neuropharm.2008.10.010 CrossRefGoogle Scholar
  16. Martínez MT, Corredoira E, Viéitez AM, Cernadas MJ, Montenegro R, Ballester A, Viéitez FJ, San Jose MC (2017) Micropropagation of mature Quercus ilex L. trees by axillary budding. Plant Cell Tissue Organ Cult 131:499–512.  https://doi.org/10.1007/s11240-017-1300-x CrossRefGoogle Scholar
  17. Monroy-Ortiz C, Castillo-España P (2007) Plantas medicinales utilizadas en el estado de Morelos. Ed. Universidad Autónoma del Estado de Morelos, Morelos, pp 253–319Google Scholar
  18. Muñoz-Flores HJ, Orozco-Gutiérrez G, García-Magaña J, Coria-Ávalos VM, Salgado-Garciclia R, Santiago-Santiago MR (2011) Épocas de colecta y tratamiento para enraizamiento de estacas de cirimo Tilia mexicana Schlecht. (Tiliaceae). Rev Mex Cienc For 2(3):13–23Google Scholar
  19. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Plant Physiol 15:473–497.  https://doi.org/10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  20. Murthy HN, Lee EJ, Paek KY (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult 118:1–16.  https://doi.org/10.1007/s11240-014-0467-7 CrossRefGoogle Scholar
  21. Murugananthan MP, Shivalinge Gowda KP (2012) In vivo animal models in preclinical evaluation of anti-inflammatory activity—a review. Int J Pharm Res Allied Sci 1(2):01–05Google Scholar
  22. Nicasio-Torres MP, Meckes-Fischer M, Aguilar-Santamaría L, Garduño-Ramírez ML, Chávez-Ávila VM, Cruz-Sosa F (2012) Production of chlorogenic acid and isoorientine hypoglycemic compounds in Cecropia obtusifolia calli and in cell suspension cultures with nitrate deficiency. Acta Physiol. Plant 34(1):307–316.  https://doi.org/10.1007/s11738-011-0830-9 CrossRefGoogle Scholar
  23. Nicasio-Torres MP, Pérez-Hernández J, González-Cortázar M, Meckes-Fischer M, Tortoriello J, Cruz-Sosa F (2016) Production of potential anti-inflammatory compounds in cell suspension cultures of Sphaeralcea angustifolia (Cav.) G. Don. Acta Physiol. Plant 38:209.  https://doi.org/10.1007/s11738-016-2211-x CrossRefGoogle Scholar
  24. Noguerón-Merino MC, Jiménez-Ferrer E, Román-Ramos R, Zamilpa A, Tortoriello J, Herrera-Ruiz M (2015) Interactions of standardized flavonoid fraction from Tilia americana with serotoninergic drugs in elevated plus maze. J Ethnopharmacol 164:319–327.  https://doi.org/10.1016/j.jep.2015.01.029 CrossRefGoogle Scholar
  25. Pan R, Gao XH, Li Y, Xia YF, Dai Y (2010) Anti-arthritic effect of Scopoletin, a coumarin compound occurring in Erycibe obtusifolia Benth stems, is associated with decreased angiogenesis in synovium. Fundam Clin Pharmacol 24:477–490.  https://doi.org/10.1111/j.1472-8206.2009.00784.x CrossRefGoogle Scholar
  26. Pavón NP, Rico GV (2000) An endangered and potentially economic tree of Mexico: Tilia mexicana (Tiliaceae). Econ Bot 54:113–114.  https://doi.org/10.1007/BF02866605 CrossRefGoogle Scholar
  27. Pérez-Hernández J, González-Cortázar M, Marquina S, Herrera-Ruiz M, Meckes-Fischer M, Tortoriello J, Cruz-Sosa F, Nicasio-Torres MP (2014) Sphaeralcic acid and Tomentin, anti-inflammatory compounds produced in cell suspension cultures of Sphaeralcea angustifolia. Planta Med 80:1–6.  https://doi.org/10.1055/s-0033-1360302 CrossRefGoogle Scholar
  28. Secretaria de Medio Ambiente y Recursos Naturales (SEMARNAT) (2010) Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesdo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Diario Oficial de la Federación, México, pp 77Google Scholar
  29. Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25.  https://doi.org/10.1023/A:1015871916833 CrossRefGoogle Scholar
  30. Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q (2018) Response of plant secondary metabolites to environmental factors. Molecules 23(4):762.  https://doi.org/10.3390/molecules23040762 CrossRefGoogle Scholar
  31. Zurita-Valencia W, Gómez-Cruz JE, Atrián-Mendoza E, Hernández-García A, Granados-García ME, García-Magaña JJ, Salgado-Garciglia R, Sánchez-Vargas NM (2014) Establecimiento de un método eficiente de germinación in vitro y micropropagación del cirimo (Tilia mexicana Schlecht.) (Tiliaceae). Polibotanica 38:129–144Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Centro de Investigación Biomédica del Sur (CIBIS)Instituto Mexicano del Seguro Social (IMSS)XochitepecMexico
  2. 2.Departamento de BiotecnologíaUniversidad Autónoma Metropolitana-IztapalapaCiudad de MéxicoMexico

Personalised recommendations