Advertisement

Evaluation of the oral immunogenicity of M cell-targeted tetravalent EDIII antigen for development of plant-based edible vaccine against dengue infection

  • Byeong-Young Kim
  • Mi-Young KimEmail author
Original Article
  • 11 Downloads

Abstract

Four serotypes of the dengue virus that can cause severe disease in humans greatly increases the complexity of vaccine development. In this study, we evaluated an ‘all-in-one’ tetravalent dengue vaccine candidate as an alternative to the classical four viruses ‘cocktail’ vaccination approach. A single polypeptide chain of the tetra-EDIII comprising all four serotypes fused to the M-cell target ligand peptide (tEDIII-Co1) was constructed and expressed using a rice expression system under the control of a strong inducible promoter (rice amylase 3D: Ramy3D) and rice 3′ untranslated region (UTR). The tEDIII-Co1 was constructed using wild type or plant codon optimized gene sequence to compare the expression levels. The codon optimized gene combined with ER-localization showed higher and more stable expression than codon-optimization alone or the wild type. To test the oral immunogenicity of this construct, the transgenic rice cells containing 100 µg of tEDIII-Co1 were fed to mice and the antigen specific IgG and IgA antibodies analysed in sera or fecal extracts. The tEDIII fused to Co1 induced strong antibody responses in the absence of any adjuvants. We observed the strongest antigen-specific B and T cell responses in animals immunized with tEDIII-Co1. Taken together, this simple tetravalent EDIII-based fusion protein with the M cell ligand could has potential as an alternative dengue vaccine strategy against all four serotypes.

Keywords

Oral immunogenicity Tetravalent vaccine Dengue Transgenic rice M cell ligand 

Notes

Acknowledgements

This study was supported by NRF-2014K1B1A1073861 through the National Research Foundation (NRF) funded by the Korean Ministry of Science, ICT & Future Planning, Republic of Korea.

Author Contributions

M-Y K. conceived and designed the overall study. M-Y K. and B-Y K performed the experiments and co-wrote the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496(7446):504–507.  https://doi.org/10.1038/nature12060 CrossRefGoogle Scholar
  2. Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, Moyes CL, Farlow AW, Scott TW, Hay SI (2012) Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis 6(8):e1760.  https://doi.org/10.1371/journal.pntd.0001760 CrossRefGoogle Scholar
  3. Cerutti A, Rescigno M (2008) The biology of intestinal immunoglobulin A responses. Immunity 28(6):740–750.  https://doi.org/10.1016/j.immuni.2008.05.001 CrossRefGoogle Scholar
  4. Chan HT, Daniell H (2015) Plant-made oral vaccines against human infectious diseases-Are we there yet? Plant Biotechnol J 13(8):1056–1070.  https://doi.org/10.1111/pbi.12471 CrossRefGoogle Scholar
  5. Chin JF, Chu JJ, Ng ML (2007) The envelope glycoprotein domain III of dengue virus serotypes 1 and 2 inhibit virus entry. Microbes Infect 9(1):1–6.  https://doi.org/10.1016/j.micinf.2006.09.009 CrossRefGoogle Scholar
  6. Crill WD, Roehrig JT (2001) Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J Virol 75(16):7769–7773.  https://doi.org/10.1128/JVI.75.16.7769-7773.2001 CrossRefGoogle Scholar
  7. Daniell H (2006) Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnol J 1(10):1071–1079.  https://doi.org/10.1002/biot.200600145 CrossRefGoogle Scholar
  8. Etemad B, Batra G, Raut R, Dahiya S, Khanam S, Swaminathan S, Khanna N (2008) An envelope domain III-based chimeric antigen produced in Pichia pastoris elicits neutralizing antibodies against all four dengue virus serotypes. Am J Trop Med Hyg 79(3):353–363CrossRefGoogle Scholar
  9. Faye L, Gomord V (2010) Success stories in molecular farming-a brief overview. Plant Biotechnol J 8(5):525–528.  https://doi.org/10.1111/j.1467-7652.2010.00521.x CrossRefGoogle Scholar
  10. Gonzalez-Rabade N, McGowan EG, Zhou F, McCabe MS, Bock R, Dix PJ, Gray JC, Ma JK (2011) Immunogenicity of chloroplast-derived HIV-1 p24 and a p24-Nef fusion protein following subcutaneous and oral administration in mice. Plant Biotechnol J 9(6):629–638.  https://doi.org/10.1111/j.1467-7652.2011.00609.x CrossRefGoogle Scholar
  11. Hadinegoro SR, Arredondo-Garcia JL, Capeding MR, Deseda C, Chotpitayasunondh T, Dietze R, Muhammad Ismail HI, Reynales H, Limkittikul K, Rivera-Medina DM, Tran HN, Bouckenooghe A, Chansinghakul D, Cortes M, Fanouillere K, Forrat R, Frago C, Gailhardou S, Jackson N, Noriega F, Plennevaux E, Wartel TA, Zambrano B, Saville M (2015) Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. N Engl J Med 373(13):1195–1206.  https://doi.org/10.1056/NEJMoa1506223 CrossRefGoogle Scholar
  12. Halstead SB (1988) Pathogenesis of dengue: challenges to molecular biology. Science 239(4839):476–481CrossRefGoogle Scholar
  13. Hasan S, Jamdar SF, Alalowi M, Al Ageel Al Beaiji SM (2016) Dengue virus: a global human threat: review of literature. J Int Soc Prev Community Dent 6(1):1–6.  https://doi.org/10.4103/2231-0762.175416 CrossRefGoogle Scholar
  14. Huy NX, Kim MY (2017) Overexpression and oral immunogenicity of a dengue antigen transiently expressed in Nicotiana benthamiana. Plant Cell Tiss Org 131(3):567–577.  https://doi.org/10.1007/s11240-017-1306-4 CrossRefGoogle Scholar
  15. Huy NX, Kim SH, Yang MS, Kim TG (2012) Immunogenicity of a neutralizing epitope from porcine epidemic diarrhea virus: M cell targeting ligand fusion protein expressed in transgenic rice calli. Plant Cell Rep 31(10):1933–1942.  https://doi.org/10.1007/s00299-012-1306-0 CrossRefGoogle Scholar
  16. Kanesa-thasan N, Sun W, Kim-Ahn G, Van Albert S, Putnak JR, King A, Raengsakulsrach B, Christ-Schmidt H, Gilson K, Zahradnik JM, Vaughn DW, Innis BL, Saluzzo JF, Hoke CH Jr (2001) Safety and immunogenicity of attenuated dengue virus vaccines (Aventis Pasteur) in human volunteers. Vaccine 19(23–24):3179–3188CrossRefGoogle Scholar
  17. Kim SH, Seo KW, Kim J, Lee KY, Jang YS (2010) The M cell-targeting ligand promotes antigen delivery and induces antigen-specific immune responses in mucosal vaccination. J Immunol 185(10):5787–5795CrossRefGoogle Scholar
  18. Kim TG, Kim MY, Huy NX, Kim SH, Yang MS (2013) M cell-targeting ligand and consensus dengue virus envelope protein domain III fusion protein production in transgenic rice calli. Mol Biotechnol 54(3):880–887.  https://doi.org/10.1007/s12033-012-9637-1 CrossRefGoogle Scholar
  19. Kim MY, Reljic R, Kilbourne J, Ceballos-Olvera I, Yang MS, Reyes-del Valle J, Mason HS (2015) Novel vaccination approach for dengue infection based on recombinant immune complex universal platform. Vaccine 33(15):1830–1838.  https://doi.org/10.1016/j.vaccine.2015.02.036 CrossRefGoogle Scholar
  20. Kim MY, Kim BY, Oh SM, Reljic R, Jang YS, Yang MS (2016) Oral immunisation of mice with transgenic rice calli expressing cholera toxin B subunit fused to consensus dengue cEDIII antigen induces antibodies to all four dengue serotypes. Plant Mol Biol 92(3):347–356.  https://doi.org/10.1007/s11103-016-0517-0 CrossRefGoogle Scholar
  21. Kim MY, Van Dolleweerd C, Copland A, Paul MJ, Hofmann S, Webster GR, Julik E, Ceballos-Olvera I, Reyes-Del Valle J, Yang MS, Jang YS, Reljic R, Ma JK (2017) Molecular engineering and plant expression of an immunoglobulin heavy chain scaffold for delivery of a dengue vaccine candidate. Plant Biotechnol J 15(12):1590–1601.  https://doi.org/10.1111/pbi.12741 CrossRefGoogle Scholar
  22. Kim MY, Copland A, Nayak K, Chandele A, Ahmed MS, Zhang Q, Diogo GR, Paul MJ, Hofmann S, Yang MS, Jang YS, Ma JK, Reljic R (2018a) Plant-expressed Fc-fusion protein tetravalent dengue vaccine with inherent adjuvant properties. Plant Biotechnol J 16(7):1283–1294.  https://doi.org/10.1111/pbi.12869 CrossRefGoogle Scholar
  23. Kim SH, Kim YN, Kim J, Jang YS (2018b) C5a receptor targeting of partial non-structural protein 3 of dengue virus promotes antigen-specific IFN-gamma-producing T-cell responses in a mucosal dengue vaccine model. Cell Immunol 325:41–47.  https://doi.org/10.1016/j.cellimm.2018.01.016 CrossRefGoogle Scholar
  24. Kurane I (2007) Dengue hemorrhagic fever with special emphasis on immunopathogenesis. Comp Immunol Microbiol Infect Dis 30(5–6):329–340.  https://doi.org/10.1016/j.cimid.2007.05.010 CrossRefGoogle Scholar
  25. Lee JH, Ko K (2017) Production of Recombinant Anti-Cancer Vaccines in Plants. Biomol Ther (Seoul) 25(4):345–353.  https://doi.org/10.4062/biomolther.2016.126 CrossRefGoogle Scholar
  26. Lee NH, Lee JA, Park SY, Song CS, Choi IS, Lee JB (2012) A review of vaccine development and research for industry animals in Korea. Clin Exp Vaccine Res 1(1):18–34.  https://doi.org/10.7774/cevr.2012.1.1.18 CrossRefGoogle Scholar
  27. Ma S, Wang L, Huang X, Wang X, Chen S, Shi W, Qiao X, Jiang Y, Tang L, Xu Y, Li Y (2018) Oral recombinant Lactobacillus vaccine targeting the intestinal microfold cells and dendritic cells for delivering the core neutralizing epitope of porcine epidemic diarrhea virus. Microb Cell Fact 17(1):20.  https://doi.org/10.1186/s12934-018-0861-7 CrossRefGoogle Scholar
  28. Mangold KA, Reynolds SL (2013) A review of dengue fever: a resurging tropical disease. Pediatr Emerg Care 29(5):665–669.  https://doi.org/10.1097/PEC.0b013e31828ed30e quiz 670-1CrossRefGoogle Scholar
  29. Minor PD (2015) Live attenuated vaccines: Historical successes and current challenges. Virology 479–480:379–392.  https://doi.org/10.1016/j.virol.2015.03.032 CrossRefGoogle Scholar
  30. Nguyen NL, So KK, Kim JM, Kim SH, Jang YS, Yang MS, Kim DH (2015) Expression and characterization of an M cell-specific ligand-fused dengue virus tetravalent epitope using Saccharomyces cerevisiae. J Biosci Bioeng 119(1):19–27.  https://doi.org/10.1016/j.jbiosc.2014.06.005 CrossRefGoogle Scholar
  31. Pang EL, Loh HS (2017) Towards development of a universal dengue vaccine - How close are we? Asian Pac J Trop Med 10(3):220–228.  https://doi.org/10.1016/j.apjtm.2017.03.003 CrossRefGoogle Scholar
  32. Rodriguez-Barraquer I, Cordeiro MT, Braga C, de Souza WV, Marques ET, Cummings DA (2011) From re-emergence to hyperendemicity: the natural history of the dengue epidemic in Brazil. PLoS Negl Trop Dis 5(1):e935.  https://doi.org/10.1371/journal.pntd.0000935 CrossRefGoogle Scholar
  33. Rothman AL (2004) Dengue: defining protective versus pathologic immunity. J Clin Invest 113(7):946–951.  https://doi.org/10.1172/JCI21512 CrossRefGoogle Scholar
  34. Shin YJ, Hong SY, Kwon TH, Jang YS, Yang MS (2003) High level of expression of recombinant human granulocyte-macrophage colony stimulating factor in transgenic rice cell suspension culture. Biotechnol Bioeng 82(7):778–783.  https://doi.org/10.1002/bit.10635 CrossRefGoogle Scholar
  35. Simmons M, Nelson WM, Wu SJ, Hayes CG (1998) Evaluation of the protective efficacy of a recombinant dengue envelope B domain fusion protein against dengue 2 virus infection in mice. Am J Trop Med Hyg 58(5):655–662CrossRefGoogle Scholar
  36. Simmons M, Murphy GS, Hayes CG (2001) Short report: Antibody responses of mice immunized with a tetravalent dengue recombinant protein subunit vaccine. Am J Trop Med Hyg 65(2):159–161CrossRefGoogle Scholar
  37. Snow GE, Haaland B, Ooi EE, Gubler DJ (2014) Review article: research on dengue during World War II revisited. Am J Trop Med Hyg 91(6):1203–1217.  https://doi.org/10.4269/ajtmh.14-0132 CrossRefGoogle Scholar
  38. So-Chon Han N-XH, Mi-Young K (2018) Enhanced expression of dengue virus EDIII-based tetravalent antigen protein using transgenic rice callus. Plant Biotechnol Rep 12(3):207–215.  https://doi.org/10.1007/s11816-018-0487-6 CrossRefGoogle Scholar
  39. Yamamoto T, Hoshikawa K, Ezura K, Okazawa R, Fujita S, Takaoka M, Mason HS, Ezura H, Miura K (2018) Improvement of the transient expression system for production of recombinant proteins in plants. Sci Rep 8(1):4755.  https://doi.org/10.1038/s41598-018-23024-y CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Molecular BiologyChonbuk National UniversityJeonjuRepublic of Korea
  2. 2.Department of Bioactive Material SciencesChonbuk National UniversityJeonjuRepublic of Korea

Personalised recommendations