Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 132, Issue 1, pp 1–25 | Cite as

Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants

  • Ligia Erpen
  • H. Sunitibala Devi
  • Jude W. Grosser
  • Manjul DuttEmail author


Abiotic and biotic stresses adversely affect the growth and productivity of plants and constitute the major yield-limiting factor in agriculture. In recent years, several  transcription factors (TF) have been identified that can function as switches to control the expression of potential stress-related genes. These transcription factors play crucial roles in governing transcriptional reprogramming during development in plant biological systems and are also capable of increasing the tolerance of plants to abiotic and biotic stresses. Thus, identifying and characterizing critical genes that are involved in plant stress responses are essential for the development of transgenic plants that exhibit enhanced stress tolerance. This review describes the DREB/ERF, MYB, NAC and WRKY TF and summarizes the studies that highlight their potential in engineering abiotic and biotic stress tolerance in transgenic plants.


Plant transformation Transcription factors Abiotic stress Biotic stress 


  1. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78PubMedPubMedCentralCrossRefGoogle Scholar
  2. Agarwal PK, Agarwal P, Reddy M, Sopory SK (2006a) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274PubMedCrossRefGoogle Scholar
  3. Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK (2006b) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281:37636–37645PubMedCrossRefGoogle Scholar
  4. Agarwal P, Agarwal PK, Joshi AJ, Sopory SK, Reddy MK (2010) Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol Biol Rep 37:1125–1135PubMedCrossRefGoogle Scholar
  5. Ahuja I, de Vos RC, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15:664–674PubMedCrossRefGoogle Scholar
  6. Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857PubMedPubMedCentralCrossRefGoogle Scholar
  7. Al Abdallat A, Ayad J, Elenein JA, Al Ajlouni Z, Harwood W (2014) Overexpression of the transcription factor HvSNAC1 improves drought tolerance in barley (Hordeum vulgare L.). Mol Breed 33:401–414CrossRefGoogle Scholar
  8. Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293:880–883PubMedCrossRefGoogle Scholar
  9. Al-Abdallat AM, Ali-Sheikh-Omar MA, Alnemer LM (2015) Overexpression of two ATNAC3-related genes improves drought and salt tolerance in tomato (Solanum lycopersicum L.). Plant Cell Tissue Organ Cult 120:989–1001CrossRefGoogle Scholar
  10. Ambawat S, Sharma P, Yadav NR, Yadav RC (2013) MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants 19:307–321PubMedPubMedCentralCrossRefGoogle Scholar
  11. Anderson JP, Lichtenzveig J, Gleason C, Oliver RP, Singh KB (2010) The B-3 ethylene response factor MtERF1-1 mediates resistance to a subset of root pathogens in Medicago truncatula without adversely affecting symbiosis with rhizobia. Plant Physiol 154:861–873PubMedPubMedCentralCrossRefGoogle Scholar
  12. Arroyo-Herrera A, Figueroa-Yáñez L, Castaño E, Santamaría J, Pereira-Santana A, Espadas-Alcocer J, Sánchez-Teyer F, Espadas-Gil F, Alcaraz LD, López-Gómez R, Sánchez-Calderón L, Rodríguez-Zapata LC (2016) A novel Dreb2-type gene from Carica papaya confers tolerance under abiotic stress. Plant Cell Tissue Organ Cult 125:119–133Google Scholar
  13. Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543PubMedCrossRefGoogle Scholar
  14. Babitha KC, Ramu SV, Pruthvi V, Mahesh P, Nataraja KN, Udayakumar M (2013) Co-expression of AtbHLH17 and AtWRKY28 confers resistance to abiotic stress in Arabidopsis. Transgenic Res 22:327–341PubMedCrossRefGoogle Scholar
  15. Baldoni E, Genga A, Cominelli E (2015) Plant MYB transcription factors: their role in drought response mechanisms. Int J Mol Sci 16:15811–15851PubMedPubMedCentralCrossRefGoogle Scholar
  16. Banerjee A, Roychoudhury A (2015) WRKY proteins: signaling and regulation of expression during abiotic stress responses. Sci World J 2015:807560CrossRefGoogle Scholar
  17. Berrocal-Lobo M, Molina A, Solano R (2002) Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J 29:23–32PubMedCrossRefGoogle Scholar
  18. Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424PubMedCrossRefGoogle Scholar
  19. Bostock RM (2005) Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu Rev Phytopathol 43:545–580PubMedCrossRefGoogle Scholar
  20. Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stress. Biochemistry and, molecular biology of plants. In: Gruissem W, Jones R (eds), American Society of Plant Physiologists, Rockville, pp 1158–1203Google Scholar
  21. Bu Q, Jiang H, Li CB, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Li C (2008) Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res 18:756–767PubMedCrossRefGoogle Scholar
  22. Buscaill P, Rivas S (2014) Transcriptional control of plant defence responses. Curr Opin Plant Biol 20:35–46PubMedCrossRefGoogle Scholar
  23. Busch W, Benfey PN (2010) Information processing without brains—the power of intercellular regulators in plants. Development 137:1215–1226PubMedPubMedCentralCrossRefGoogle Scholar
  24. Büttner M, Singh KB (1997) Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proc Natl Acad Sci USA 94:5961–5966PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cai R, Zhao Y, Wang Y, Lin Y, Peng X, Li Q, Chang Y, Jiang H, Xiang Y, Cheng B (2014) Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice. Plant Cell Tissue Organ Cult 119:565–577CrossRefGoogle Scholar
  26. Cai H, Yang S, Yan Y, Xiao Z, Cheng J, Wu J, Qiu A, Lai Y, Mou S, Guan D (2015) CaWRKY6 transcriptionally activates CaWRKY40, regulates Ralstonia solanacearum resistance, and confers high-temperature and high-humidity tolerance in pepper. J Exp Bot 66:3163–3174PubMedCrossRefGoogle Scholar
  27. Cao ZH, Zhang SZ, Wang RK, Zhang RF, Hao YJ (2013) Genome wide analysis of the apple MYB transcription factor family allows the identification of MdoMYB121 Gene confering abiotic stress tolerance in plants. PLoS ONE 8:e69955PubMedPubMedCentralCrossRefGoogle Scholar
  28. Casaretto JA, El-kereamy A, Zeng B, Stiegelmeyer SM, Chen X, Bi YM, Rothstein SJ (2016) Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance. BMC Genomics 17:312PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chao G, Zhi-Hua G, Ping-Ping H, Guo-Ming W, Zi-Ming J, Shao-Ling Z (2017) Multiple regulatory roles of AP2/ERF transcription factor in angiosperm. Bot Stud 58:6CrossRefGoogle Scholar
  30. Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 353:299–305PubMedCrossRefGoogle Scholar
  31. Chen JQ, Meng XP, Zhang Y, Xia M, Wang XP (2008) Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30:2191–2198PubMedCrossRefGoogle Scholar
  32. Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. BBA-Gene Regul Mech 1819:120–128Google Scholar
  33. Chen Y, Chen Z, Kang J, Kang D, Gu H, Qin G (2013a) AtMYB14 regulates cold tolerance in Arabidopsis. Plant Mol Biol Rep 31:87–97PubMedCrossRefGoogle Scholar
  34. Chen L, Zhang L, Li D, Wang F, Yu D (2013b) WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA 110:1963–1971CrossRefGoogle Scholar
  35. Chen H, Liu L, Wang L, Wang S, Cheng X (2016) VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana. J Plant Res 129:1–11CrossRefGoogle Scholar
  36. Chen YH, Cao YY, Wang LJ, Li LM, Yang J, Zou MX (2017) Identification of MYB transcription factor genes and their expression during abiotic stresses in maize. Biol Plant. doi: 10.1007/s10535-017-0756-1 Google Scholar
  37. Cheng YJ, Kim MD, Deng XP, Kwak SS, Chen W (2013) Enhanced salt stress tolerance in transgenic potato plants expressing IbMYB1, a sweet potato transcription factor. J Microbiol Biotechnol 23:1737–1746PubMedCrossRefGoogle Scholar
  38. Cheng H, Liu H, Deng Y, Xiao J, Li X, Wang S (2015) The WRKY45-2 WRKY13 WRKY42 transcriptional regulatory cascade is required for rice resistance to fungal pathogen. Plant Physiol 167:1087–1099PubMedPubMedCentralCrossRefGoogle Scholar
  39. Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Gene Dev 17:1043–1054PubMedPubMedCentralCrossRefGoogle Scholar
  40. Choi C, Hwang SH, Fang IR, Kwon SI, Park SR, Ahn I, Kim JB, Hwang DJ (2015) Molecular characterization of Oryza sativa WRKY6, which binds to Wbox-like element 1 of the Oryza sativa pathogenesis-related (PR) 10a promoter and confers reduced susceptibility to pathogens. New Phytol 208:846–859PubMedCrossRefGoogle Scholar
  41. Chu X, Wang C, Chen X, Lu W, Li H, Wang X, Hao L, Guo X (2015) The cotton WRKY Gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana. PLoS ONE 10:e0143022PubMedPubMedCentralCrossRefGoogle Scholar
  42. Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta SL, Tonelli C (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol 15:1196–1200PubMedCrossRefGoogle Scholar
  43. Cui M, Zhang W, Zhang Q, Xu Z, Zhu Z, Duan F, Wu R (2011) Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant Physiol Biochem 49:1384–1391PubMedCrossRefGoogle Scholar
  44. Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739–1751PubMedPubMedCentralCrossRefGoogle Scholar
  45. Delessert C, Kazan K, Wilson IW, Straeten DVD, Manners J, Dennis ES, Dolferus R (2005) The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J 43:745–757PubMedCrossRefGoogle Scholar
  46. Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA 103:8281–8286PubMedPubMedCentralCrossRefGoogle Scholar
  47. Dong N, Liu X, Lu Y, Du L, Xu H, Liu H, Xin Z, Zhang Z (2010) Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana. Funct Integr Genomics 10:215–226PubMedCrossRefGoogle Scholar
  48. Dong L, Cheng Y, Wu J, Cheng Q, Li W, Fan S, Jiang L, Xu Z, Kong F, Zhang D, Xu P, Zhang S (2015) Overexpression of GmERF5, a new member of the soybean EAR motif containing ERF transcription factor, enhances resistance to Phytophthora sojae in soybean. J Exp Bot 66:2635–2647PubMedCrossRefGoogle Scholar
  49. Dou TX, Hu CH, Sun XX, Shao XH, Wu JH, Ding LJ, Gao J, He WD, Biswas MK, Yang QS, Yi GJ  (2016) MpMYBS3 as a crucial transcription factor of cold signaling confers the cold tolerance of banana. Plant Cell Tissue Organ Cult 125:93–106Google Scholar
  50. Duan Y, Jiang Y, Ye S, Karim A, Ling Z, He Y, Yang S, Luo K (2015) PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana. Plant Cell Rep 34:831–841PubMedPubMedCentralCrossRefGoogle Scholar
  51. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581PubMedCrossRefGoogle Scholar
  52. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought, high-salt-and cold responsive gene expression. Plant J 33:751–763PubMedCrossRefGoogle Scholar
  53. Durrant W, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209Google Scholar
  54. El-kereamy A, Bi YM, Ranathunge K, Beatty PH, Good AG, Rothstein SJ (2012) The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PLoS ONE 7:e52030PubMedPubMedCentralCrossRefGoogle Scholar
  55. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371PubMedCrossRefGoogle Scholar
  56. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206PubMedCrossRefGoogle Scholar
  57. Eyidogan F, Oz MT, Yucel M, Oktem HA (2012) Signal transduction of phytohormones under abiotic stresses. Phytohorm Abiotic Stress Toler Plants 642:978–1007Google Scholar
  58. Fan Q, Song A, Jiang J, Zhang T, Sun H, Wang Y, Chen S, Chen F (2016) CmWRKY1 enhances the dehydration tolerance of chrysanthemum through the regulation of ABA-associated genes. PLoS ONE 11:e0150572PubMedPubMedCentralCrossRefGoogle Scholar
  59. Fang Y, Liao K, Du H, Xu Y, Song H, Li X, Xiong L (2015) A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot 66:6803–6817PubMedPubMedCentralCrossRefGoogle Scholar
  60. Feng C, Andreasson E, Maslak A, Mock HP, Mattsson O, Mundy J (2004) Arabidopsis MYB68 in development and responses to environmental cues. Plant Sci 167:1099–1107CrossRefGoogle Scholar
  61. Fischer U, Dröge-Laser W (2004) Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus. MPMI 17:1162–1171PubMedCrossRefGoogle Scholar
  62. Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690PubMedPubMedCentralCrossRefGoogle Scholar
  63. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875PubMedPubMedCentralCrossRefGoogle Scholar
  64. Fuganti-Pagliarini R, Ferreira LC, Rodrigues FA, Molinari HBC, Marin SRR, Molinari MDC, Marcolino-Gomes J, Mertz-Henning LM, Farias JRB, de Oliveira MCN, Neumaier N, Kanamori N, Fujita Y, Mizoi J, Nakashima K, Yamaguchi-Shinozaki K, Nepomuceno AL (2017) Characterization of soybean genetically modified for drought tolerance in field conditions. Front Plant Sci 8:448PubMedPubMedCentralCrossRefGoogle Scholar
  65. Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LSP, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863–876PubMedCrossRefGoogle Scholar
  66. Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442PubMedCrossRefGoogle Scholar
  67. Gong XQ, Hu JB, Liu JH (2014) Cloning and characterization of FcWRKY40, A WRKY transcription factor from Fortunella crassifolia linked to oxidative stress tolerance. Plant Cell Tissue Organ Cult 119:197–210CrossRefGoogle Scholar
  68. Gong X, Zhang J, Hu J, Wang W, Wu H, Zhang Q, Liu JH (2015) FcWRKY70, a WRKY protein of Fortunella crassifolia, functions in drought tolerance and modulates putrescine synthesis by regulating arginine decarboxylase gene. Plant Cell Environ 38:2248–2262PubMedCrossRefGoogle Scholar
  69. Guan Q, Wu J, Zhang Y, Jiang C, Liu R, Chai C, Zhu J (2013) A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive Gene regulation, and cold tolerance in Arabidopsis. Plant Cell 25:342–356PubMedPubMedCentralCrossRefGoogle Scholar
  70. Guo W, Zhang J, Zhang N, Xin M, Peng H, Hu Z, Ni Z, Du J (2015) The wheat NAC transcription factor TaNAC2L is regulated at the transcriptional and post-translational levels and promotes heat stress tolerance in transgenic Arabidopsis. PLoS ONE 10:e0135667PubMedPubMedCentralCrossRefGoogle Scholar
  71. Haake V, Cook D, Riechmann J, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639–648PubMedPubMedCentralCrossRefGoogle Scholar
  72. Hao YJ, Wei W, Song QX, Chen HW, Zhang YQ, Wang F, Zou HF, Lei G, Tian AG, Zhang WK (2011) Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J 68:302–313PubMedCrossRefGoogle Scholar
  73. He GH, Xu JY, Wang YX, Liu JM, Li PS, Chen M, Ma YZ, Xu ZS (2016) Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol 16:116PubMedPubMedCentralCrossRefGoogle Scholar
  74. Hegedus D, Yu M, Baldwin D, Gruber M, Sharpe A, Parkin I, Whitwill S, Lydiate D (2003) Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol Biol 53:383–397PubMedCrossRefGoogle Scholar
  75. Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217–218:109–119PubMedCrossRefGoogle Scholar
  76. Hickman R, Hill C, Penfold CA, Breeze E, Bowden L, Moore JD, Zhang P, Jackson A, Cooke E, Bewicke-Copley F, Mead A, Beynon J, Wild DL, Denby KJ, Ott S, Buchanan-Wollaston V (2013) A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves. Plant J 75:26–39PubMedPubMedCentralCrossRefGoogle Scholar
  77. Higashi K, Ishiga Y, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2008) Modulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thaliana. Mol Genet Genomics 279:303–312PubMedCrossRefGoogle Scholar
  78. Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094PubMedPubMedCentralCrossRefGoogle Scholar
  79. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992PubMedPubMedCentralCrossRefGoogle Scholar
  80. Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor Gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169–181PubMedCrossRefGoogle Scholar
  81. Huang PY, Catinot J, Zimmerli L (2016a) Ethylene response factors in Arabidopsis immunity. J Exp Bot 67:1231–1241PubMedCrossRefGoogle Scholar
  82. Huang Y, Zhang BL, Sun S, Xing GM, Wang F, Li MY, Tian YS, Xiong AS (2016b) AP2/ERF transcription factors involved in response to tomato yellow leaf curly virus in tomato. Plant Genome 9:1–15CrossRefGoogle Scholar
  83. Humphrey TV, Bonetta DT, Goring DR (2007) Sentinels at the wall: cell wall receptors and sensors. New Phytol 176:7–21PubMedCrossRefGoogle Scholar
  84. Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917PubMedPubMedCentralCrossRefGoogle Scholar
  85. Jensen MK, Rung JH, Gregersen PL, Gjetting T, Fuglsang AT, Hansen M, Joehnk N, Lyngkjaer MF, Collinge DB (2007) The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Mol Biol 65:137–150PubMedCrossRefGoogle Scholar
  86. Jensen MK, Hagedorn PH, Torres-Zabala D, Grant MR, Rung JH, Collinge DB, Lyngkjaer MF (2008) Transcriptional regulation by an NAC (NAM–ATAF1, 2–CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J 56:867–880PubMedCrossRefGoogle Scholar
  87. Jensen MK, Kjaersgaard T, Nielsen MM, Galberg P, Petersen K, O’Shea C, Skriver K (2010) The Arabidopsis thaliana NAC transcription factor family: Structure-function relationships and determinants of ANAC019 stress signalling. Biochem J 426:183–196PubMedCrossRefGoogle Scholar
  88. Jeong RD, Chandra-Shekara A, Kachroo A, Klessig DF, Kachroo P (2008) HRT-mediated hypersensitive response and resistance to Turnip crinkle virus in Arabidopsis does not require the function of TIP, the presumed guardee protein. MPMI 21:1316–1324PubMedCrossRefGoogle Scholar
  89. Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Do Choi Y, Kim M, Reuzeau C, Kim JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197PubMedPubMedCentralCrossRefGoogle Scholar
  90. Jiang Y, Liang G, Yu D (2012) Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Mol Plant 5:1375–1388PubMedCrossRefGoogle Scholar
  91. Jiang M, Liu Q, Liu ZN, Li JZ, He CM (2016) Over-expression of a WRKY transcription factor gene BoWRKY6 enhances resistance to downy mildew in transgenic broccoli plants. Australas Plant Pathol 45:327–334CrossRefGoogle Scholar
  92. Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J (2017) WRKY transcription factors in plant responses to stresses. J Integr Plant Biol 59:86–101PubMedCrossRefGoogle Scholar
  93. Jin WM, Dong J, Hu YL, Lin ZP, Xu XF, Han ZH (2009) Improved cold-resistant performance in transgenic grape (Vitis vinifera L.) overexpressing cold inducible transcription factors AtDREB1b. Hortscience 44:35–39Google Scholar
  94. Jisha V, Dampanaboina L, Vadassery J, Mithofer A, Kappara S, Ramanan R (2015) Overexpression of an AP2/ERF Type transcription factor OsEREBP1 confers biotic and abiotic stress tolerance in rice. PLoS ONE 10:e0127831PubMedPubMedCentralCrossRefGoogle Scholar
  95. Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Do Choi Y, Cheong JJ (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol 146:623–635PubMedPubMedCentralCrossRefGoogle Scholar
  96. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291PubMedCrossRefGoogle Scholar
  97. Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A Gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by Gene transfer. Plant Cell Physiol 45:346–350PubMedCrossRefGoogle Scholar
  98. Khan MS (2011) The role of DREB transcription factors in abiotic stress tolerance of plants. Biotechnol Biotechnol Eq 25:2433–2442CrossRefGoogle Scholar
  99. Kilian J, Peschke F, Berendzen KW, Harter K, Wanke D (2012) Prerequisites, performance and profits of transcriptional profiling the abiotic stress response. BBA-Gene Regul Mech 1819:166–175Google Scholar
  100. Kim KC, Lai Z, Fan B, Chen Z (2008) Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20:2357–2371PubMedPubMedCentralCrossRefGoogle Scholar
  101. Kim JS, Mizoi J, Kidokoro S, Maruyama K, Nakajima J, Nakashima K, Mitsuda N, Takiguchi Y, Ohme-Takagi M, Kondou Y, Yoshizumi T, Matsui M, Shinozaki K, Yamaguchi-Shinozaki K (2012) Arabidopsis growth-regulating factor 7 functions as a transcriptional repressor of abscisic acid and osmotic stress-responsive genes, including DREB2A. Plant Cell 24:3393–3405PubMedPubMedCentralCrossRefGoogle Scholar
  102. Knoth C, Ringler J, Dangl JL, Eulgem T (2007) Arabidopsis WRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica. MPMI 20:120–128PubMedCrossRefGoogle Scholar
  103. Kobayashi F, Ishibashi M, Takumi S (2007) Transcriptional activation of Cor/Lea genes and increase in abiotic stress tolerance through expression of a wheat DREB2 homolog in transgenic tobacco. Transgenic Res 17:755–767PubMedCrossRefGoogle Scholar
  104. Kosová K, Vítámvás P, Urban MO, Klíma M, Roy A, Prásil IT (2015) Biological networks underlying abiotic stress tolerance in temperate crops—A proteomic perspective. Int J Mol Sci 16:20913–20942Google Scholar
  105. Kudo K, Oi T, Uno Y (2014) Functional characterization and expression profiling of a DREB2-type Gene from lettuce (Lactuca sativa L.). Plant Cell Tissue Organ Cult 116:97–109CrossRefGoogle Scholar
  106. Kume S, Kobayashi F, Ishibashi M, Ohno R, Nakamura C, Takumi S (2005) Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance. Genes Genet Syst 80:185–197PubMedCrossRefGoogle Scholar
  107. Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748PubMedCrossRefGoogle Scholar
  108. Le Hénanff G, Profizi C, Courteaux B, Rabenoelina F, Gérard C, Clément C, Baillieul F, Cordelier S, Dhondt-Cordelier S (2013) Grapevine NAC1 transcription factor as a convergent node in developmental processes, abiotic stresses, and necrotrophic/biotrophic pathogen tolerance. J Exp Bot 64:4877–4893PubMedCrossRefGoogle Scholar
  109. Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331PubMedPubMedCentralCrossRefGoogle Scholar
  110. Li J, Brader G, Kariola T, Tapio Palva E (2006) WRKY70 modulates the selection of signaling pathways in plant defense. Plant J 46:477–491PubMedCrossRefGoogle Scholar
  111. Li S, Fu Q, Huang W, Yu D (2009) Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Rep 28:683–693PubMedCrossRefGoogle Scholar
  112. Li CW, Su RC, Cheng CP, Sanjaya S, You SJ, Hsieh TH, Chao TC, Chan MT (2011a) Tomato RAV transcription factor is a pivotal modulator involved in the AP2/EREBP-mediated defense pathway. Plant Physiol 156:213–227PubMedPubMedCentralCrossRefGoogle Scholar
  113. Li S, Fu Q, Chen L, Huang W, Yu D (2011b) Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233:1237–1252PubMedCrossRefGoogle Scholar
  114. Li H, Gao Y, Xu H, Dai Y, Deng D, Chen J (2013) ZmWRKY33, a WRKY maize transcription factor conferring enhanced salt stress tolerances in Arabidopsis. Plant Growth Regul 70:207–216CrossRefGoogle Scholar
  115. Li X, Zhang D, Li H, Wang Y, Zhang Y, Wood AJ (2014a) EsDREB2B, a novel truncated DREB2-type transcription factor in the desert legume Eremosparton songoricum, enhances tolerance to multiple abiotic stresses in yeast and transgenic tobacco. BMC Plant Biol 14:44PubMedPubMedCentralCrossRefGoogle Scholar
  116. Li D, Li Y, Zhang L, Wang X, Zhao Z, Tao Z, Wang J, Wang J, Lin M, Li X, Yang Y (2014b) Arabidopsis ABA Receptor RCAR1/PYL9 Interacts with an R2R3-Type MYB Transcription Factor, AtMYB44. Int J Mol Sci 15:8473–8490PubMedPubMedCentralCrossRefGoogle Scholar
  117. Li JB, Luan YS, Yin YL (2014c) SpMYB overexpression in tobacco plants leads to altered abiotic and biotic stress responses. Gene 547:145–151PubMedCrossRefGoogle Scholar
  118. Li C, Ng CKY, Fan LM (2015a) MYB transcription factors, active players in abiotic stress signaling. Environ Exp Bot 114:80–91CrossRefGoogle Scholar
  119. Li J, Wang J, Wang N, Guo X, Gao Z (2015b) GhWRKY44, a WRKY transcription factor of cotton, mediates defense responses to pathogen infection in transgenic Nicotiana benthamiana. Plant Cell Tissue Organ Cult 121:127–140Google Scholar
  120. Li JB, Luan YS, Liu Z (2015c) Overexpression of SpWRKY1 promotes resistance to Phytophthora nicotianae and tolerance to salt and drought stress in transgenic tobacco. Physiol Plant 155:248–266PubMedCrossRefGoogle Scholar
  121. Li JB, Luan YS, Liu Z (2015d) SpWRKY1 mediates resistance to Phytophthora infestans and tolerance to salt and drought stress by modulating reactive oxygen species homeostasis and expression of defense-related genes in tomato. Plant Cell Tissue Organ Cult 123: 67–81CrossRefGoogle Scholar
  122. Lin R, Zhao W, Meng X, Wang M, Peng Y (2007) Rice Gene OsNAC19 encodes a novel NAC-domain transcription factor and responds to infection by Magnaporthe grisea. Plant Sci 172:120–130CrossRefGoogle Scholar
  123. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406PubMedPubMedCentralCrossRefGoogle Scholar
  124. Liu X, Bai X, Wang X, Chu C (2007) OsWRKY71, a rice transcription factor, is involved in rice defense response. J Plant Physiol 164:969–979PubMedCrossRefGoogle Scholar
  125. Liu H, Zhou X, Dong N, Liu X, Zhang H, Zhang Z (2011a) Expression of a wheat MYB gene in transgenic tobacco enhances resistance to Ralstonia solanacearum, and to drought and salt stresses. Funct Integr Genomics 11:431–443PubMedCrossRefGoogle Scholar
  126. Liu QL, Xu KD, Zhao LJ, Pan YZ, Jiang BB, Zhang HQ (2011b) Overexpression of a novel chrysanthemum NAC transcription factor gene enhances salt tolerance in tobacco. Biotechnol Lett 33:2073–2082PubMedCrossRefGoogle Scholar
  127. Liu X, Yang L, Zhou X, Zhou M, Lu Y, Ma L, Ma H, Zhang Z (2013) Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease. J Exp Bot 64:2243–2253PubMedPubMedCentralCrossRefGoogle Scholar
  128. Liu B, Ouyang Z, Zhang Y, Li X, Hong Y, Huang L, Liu S, Zhang H, Li D, Song F (2014) Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response. PLoS ONE 9:e102067PubMedPubMedCentralCrossRefGoogle Scholar
  129. Liu Z, Luan Y, Li J, Yin Y (2016) Expression of a tomato MYB Gene in transgenic tobacco increases resistance to Fusarium oxysporum and Botrytis cinerea. Eur J Plant Pathol 144:607–617CrossRefGoogle Scholar
  130. Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620PubMedCrossRefGoogle Scholar
  131. Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) Ethylene response factor 1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178PubMedPubMedCentralCrossRefGoogle Scholar
  132. Lu M, Ying S, Zhang DF, Shi YS, Song YC, Wang TY, Li Y (2012) A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis. Plant Cell Rep 31:1701–1711PubMedCrossRefGoogle Scholar
  133. Lu M, Zhang DF, Shi YS, Song YC, Wang TY, Li Y (2013) Expression of SbSNAC1, a NAC transcription factor from sorghum, confers drought tolerance to transgenic Arabidopsis. Plant Cell Tissue Organ Cult 115:443–455Google Scholar
  134. Ma Q, Dai X, Xu Y, Guo J, Liu Y, Chen N, Xiao J, Zhang D, Xu Z, Zhang X (2009) Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol 150:244–256PubMedPubMedCentralCrossRefGoogle Scholar
  135. Mao X, Jia D, Li A, Zhang H, Tian S, Zhang X, Jia J, Jing R (2011a) Transgenic expression of TaMYB2A confers enhanced tolerance to multiple abiotic stresses in Arabidopsis. Funct Integr Genomics 11:445–465PubMedCrossRefGoogle Scholar
  136. Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S (2011b) Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23:1639–1653PubMedPubMedCentralCrossRefGoogle Scholar
  137. Mao H, Yu L, Han R, Li Z, Liu H (2016) ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis. Plant Physiol Biochem 105:55–66PubMedCrossRefGoogle Scholar
  138. Marchive C, Mzid R, Deluc L, Barrieu F, Pirrello J, Gauthier A, Corio-Costet M-F, Regad F, Cailleteau B, Hamdi S (2007) Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants. J Exp Bot 58:1999–2010PubMedCrossRefGoogle Scholar
  139. Marchive C, Léon C, Kappel C, Coutos-Thévenot P, Corio-Costet M-F, Delrot S, Lauvergeat V (2013) Over-expression of VvWRKY1 in grapevines induces expression of jasmonic acid pathway-related genes and confers higher tolerance to the downy mildew. PLoS ONE 8:e54185PubMedPubMedCentralCrossRefGoogle Scholar
  140. Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38:982–993PubMedCrossRefGoogle Scholar
  141. Maruyama Y, Yamoto N, Suzuki Y, Chiba Y, Yamazaki K, Sato T, Yamaguchi J (2013) The Arabidopsis transcriptional repressor ERF9 participates in resistance against necrotrophic fungi. Plant Sci 213:79–87PubMedCrossRefGoogle Scholar
  142. Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K, Shinozaki K, Yamaguchi-Shinozaki K (2010) Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Genet Genomics 283:185–196PubMedCrossRefGoogle Scholar
  143. Mauch-Mani B, Flors V (2009) The ATAF1 transcription factor: at the convergence point of ABA-dependent plant defense against biotic and abiotic stresses. Cell Res 19:1322PubMedCrossRefGoogle Scholar
  144. McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible W-R, Udvardi MK, Kazan K (2005) Repressor-and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139:949–959PubMedPubMedCentralCrossRefGoogle Scholar
  145. Medina J, Bargues M, Terol J, Pérez-Alonso M, Salinas J (1999) The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119:463–470PubMedPubMedCentralCrossRefGoogle Scholar
  146. Mitsuda N, Ohme-Takagi M (2009) Functional analysis of transcription factors in Arabidopsis. Plant Cell Physiol 50:1232–1248PubMedPubMedCentralCrossRefGoogle Scholar
  147. Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462PubMedCrossRefGoogle Scholar
  148. Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan EN, Yun D-J, Hasegawa PM (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19:1403–1414PubMedPubMedCentralCrossRefGoogle Scholar
  149. Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. BBA-Gene Regul Mech 1819:86–96Google Scholar
  150. Montesinos E (2007) Antimicrobial peptides and plant disease control. FEMS Microbiol Lett 270:1–11PubMedCrossRefGoogle Scholar
  151. Moore JW, Loake GJ, Spoel SH (2011) Transcription dynamics in plant immunity. Plant Cell 23:2809–2820PubMedPubMedCentralCrossRefGoogle Scholar
  152. Mori IC, Schroeder JI (2004) Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol 135:702–708PubMedPubMedCentralCrossRefGoogle Scholar
  153. Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9:230–249PubMedCrossRefGoogle Scholar
  154. Movahedi A, Zhang J, Gao P, Yang Y, Wang L, Yin T, Kadkhodaei S, Ebrahimi M, Zhuge Q (2015) Expression of the chickpea CarNAC3 gene enhances salinity and drought tolerance in transgenic poplars. Plant Cell Tissue Organ Cult 120:141–154Google Scholar
  155. Munnik T, Vermeer JEM (2010) Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant Cell Environ 33:655–659PubMedCrossRefGoogle Scholar
  156. Muthamilarasan M, Bonthala VS, Khandelwal R, Jaishankar J, Shweta S, Nawaz K, Prasad M (2015) Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiotic stress signaling. Front Plant Sci 6:910PubMedPubMedCentralGoogle Scholar
  157. Mzid R, Marchive C, Blancard D, Deluc L, Barrieu F, Corio-Costet MF, Drira N, Hamdi S, Lauvergeat V (2007) Overexpression of VvWRKY2 in tobacco enhances broad resistance to necrotrophic fungal pathogens. Physiol Plant 131:434–447PubMedCrossRefGoogle Scholar
  158. Nakamichi N, Kusano M, Fukushima A, Kita M, Ito S, Yamashino T, Saito K, Sakakibara H, Mizuno T (2009) Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. Plant Cell Physiol 50:447–462PubMedCrossRefGoogle Scholar
  159. Nakashima K, Tran LSP, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630PubMedCrossRefGoogle Scholar
  160. Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95PubMedPubMedCentralCrossRefGoogle Scholar
  161. Naoumkina MA, He X, Dixon RA (2008) Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula. BMC Plant Biol 8:1CrossRefGoogle Scholar
  162. Negi S, Tak H, Ganapathi TR (2016) Expression analysis of MusaNAC68 transcription factor and its functional analysis by overexpression in transgenic banana plants. Plant Cell Tissue Organ Cult 125:59–70CrossRefGoogle Scholar
  163. Niinemets Ü (2010) Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. Forest Ecol Manag 260:1623–1639CrossRefGoogle Scholar
  164. Nimchuk Z, Eulgem T, Holt Iii BF, Dangl JL (2003) Recognition and response in the plant immune system. ‎Annu Rev Genet 37:579–609PubMedCrossRefGoogle Scholar
  165. Niu CF, Wei W, Zhou QY, Tian AG, Hao YJ, Zhang WK, Ma B, Lin G, Zhang ZB, Zhang JS (2012) Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ 35:1156–1170PubMedCrossRefGoogle Scholar
  166. Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465:30–44PubMedCrossRefGoogle Scholar
  167. Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351PubMedPubMedCentralCrossRefGoogle Scholar
  168. Oh SK, Baek KH, Park JM, Yi SY, Yu SH, Kamoun S, Choi D (2008) Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense. New Phytol 177:977–989PubMedCrossRefGoogle Scholar
  169. Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182PubMedPubMedCentralCrossRefGoogle Scholar
  170. Owens CL, Thomashow MF, Hancock JF, Iezzoni AF (2002) CBF1 orthologs in sour cherry and strawberry and the heterologous expression of CBF1 in strawberry. J Am Soc Hortic Sci 127:489–494Google Scholar
  171. Pandey P, Ramegowda V, Senthil-Kumar M (2015) Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front Plant Sci 6:723PubMedPubMedCentralCrossRefGoogle Scholar
  172. Pasquali G, Biricolti S, Locatelli F, Baldoni E, Mattana M (2008) Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Rep 27:1677–1686PubMedCrossRefGoogle Scholar
  173. Peng SQ, Wu KX, Huang GX, Chen SC (2011) HbMyb1, a Myb transcription factor from Hevea brasiliensis, suppresses stress induced cell death in transgenic tobacco. Plant Physiol Biochem 49:1429–1435PubMedCrossRefGoogle Scholar
  174. Phukan UJ, Jeena GS, Shukla RK (2016) WRKY transcription factors: molecular regulation and stress responses in plants. Front Plant Sci 7:760PubMedPubMedCentralCrossRefGoogle Scholar
  175. Phukan UJ, Jeena GS, Tripathi V, Shukla RK (2017) Regulation of Apetala2/ethylene response factors in plants. Front Plant Sci 8:150PubMedPubMedCentralCrossRefGoogle Scholar
  176. Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381PubMedCrossRefGoogle Scholar
  177. Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LSP, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50:54–69Google Scholar
  178. Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Yamaguchi-Shinozaki K (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45:1042–1052PubMedCrossRefGoogle Scholar
  179. Qin F, Sakuma Y, Tran LS, Maruyama K, Kidokoro S, Fujita Y, Fujita M, Umezawa T, Sawano Y, Miyazono K, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2008) Arabidopsis DREB2A interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20:1693–1707PubMedPubMedCentralCrossRefGoogle Scholar
  180. Qin Y, Wang M, Tian Y, He W, Han L, Xia G (2012) Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis. Mol Biol Rep 39:7183–7192PubMedCrossRefGoogle Scholar
  181. Qiu Y, Jing S, Fu J, Li L, Yu D (2004) Cloning and analysis of expression profile of 13 WRKY genes in rice. Chin Sci Bull 49:2159–2168Google Scholar
  182. Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S (2007) OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate and jasmonate-dependent signaling. MPMI 20:492–499PubMedCrossRefGoogle Scholar
  183. Raffaele S, Rivas S, Roby D (2006) An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Lett 580:3498–3504PubMedCrossRefGoogle Scholar
  184. Raineri J, Ribichich KF, Chan RL (2015a) The sunflower transcription factor HaWRKY76 confers drought and flood tolerance to Arabidopsis thaliana plants without yield penalty. Plant Cell Rep 34:2065–2080PubMedCrossRefGoogle Scholar
  185. Raineri J, Wang S, Peleg Z, Blumwald E, Chan RL (2015b) The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress. Plant Mol Biol 88:401–413PubMedCrossRefGoogle Scholar
  186. Raman M, Chen W, Cobb MH (2007) Differential regulation and properties of MAPKs. Oncogene 26:3100–3112PubMedCrossRefGoogle Scholar
  187. Rehman S, Mahmood T (2015) Functional role of DREB and ERF transcription factors: regulating stress-responsive network in plants. Acta Physiol Plant 37:1–14CrossRefGoogle Scholar
  188. Rejeb I, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3:458–475PubMedPubMedCentralCrossRefGoogle Scholar
  189. Ren T, Qu F, Morris TJ (2000) HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell 12:1917–1925PubMedPubMedCentralCrossRefGoogle Scholar
  190. Ren T, Qu F, Morris TJ (2005) The nuclear localization of the Arabidopsis transcription factor TIP is blocked by its interaction with the coat protein of Turnip crinkle virus. Virology 331:316–324PubMedCrossRefGoogle Scholar
  191. Ren X, Chen Z, Liu Y, Zhang H, Zhang M, Liu Q, Hong X, Zhu JK, Gong Z (2010) ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J 63:417–429PubMedPubMedCentralCrossRefGoogle Scholar
  192. Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, Adam L, Pineda O, Ratcliffe O, Samaha R (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110PubMedCrossRefGoogle Scholar
  193. Rockström J, Falkenmark M (2000) Semiarid crop production from a hydrological perspective: gap between potential and actual yields. Crit Rev Plant Sci 19:319–346CrossRefGoogle Scholar
  194. Şahin-Çevik M (2012) A WRKY transcription factor gene isolated from Poncirus trifoliata show differential responses to cold and drought stresses. Plant Omics J 5:438–445Google Scholar
  195. Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009PubMedCrossRefGoogle Scholar
  196. Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006a) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309PubMedPubMedCentralCrossRefGoogle Scholar
  197. Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006b) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA 103:18822–18827PubMedPubMedCentralCrossRefGoogle Scholar
  198. Samad AFA, Sajad M, Nazaruddin N, Fauzi IA, Murad AMA, Zainal Z, Ismail I (2017) MicroRNA and transcription factor: key players in plant regulatory network. Front Plant Sci 8:565PubMedPubMedCentralCrossRefGoogle Scholar
  199. Savitch LV, Allard G, Seki M, Robert LS, Tinker NA, Huner NPA, Shinozaki K, Singh J (2005) The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant Cell Physiol 46:1525–1539PubMedCrossRefGoogle Scholar
  200. Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, von Koskull-Döring P (2008) A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J 53:264–274PubMedCrossRefGoogle Scholar
  201. Selth LA, Dogra SC, Rasheed MS, Healy H, Randles JW, Rezaian MA (2005) A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell 17:311–325PubMedPubMedCentralCrossRefGoogle Scholar
  202. Seo PJ, Park CM (2010) MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New Phytol 186:471–483PubMedCrossRefGoogle Scholar
  203. Seo PJ, Xiang F, Qiao M, Park JY, Lee YN, Kim SG, Lee YH, Park WJ, Park CM (2009) The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol 151:275–289PubMedPubMedCentralCrossRefGoogle Scholar
  204. Shahnejat-Bushehri S, Mueller-Roeber B, Balazadeh S (2012) Arabidopsis NAC transcription factor JUNGBRUNNEN1 affects thermomemory-associated genes and enhances heat stress tolerance in primed and unprimed conditions. Plant Signal Behav 7:1518–1521PubMedPubMedCentralCrossRefGoogle Scholar
  205. Shan W, Chen JY, Kuang JF, Lu WJ (2015) Banana fruit NAC transcription factor MaNAC5 cooperates with MaWRKYs to enhance the expression of pathogenesis-related genes against Colletotrichum musae. Mol Plant Pathol 17:330–338PubMedCrossRefGoogle Scholar
  206. Shan T, Rong W, Xu H, Du L, Liu X, Zhang Z (2016) The wheat R2R3-MYB transcription factor TaRIM1 participates in resistance response against the pathogen Rhizoctonia cerealis infection through regulating defense genes. Sci Rep 6:28777PubMedPubMedCentralCrossRefGoogle Scholar
  207. Shi H, Chan Z (2014) The cysteine2/histidine2-type transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA 6-activated C-REPEAT-BINDING FACTOR pathway is essential for melatonin-mediated freezing stress resistance in Arabidopsis. J Pineal Res 57:185–191PubMedCrossRefGoogle Scholar
  208. Shi W, Liu D, Hao L, Wu CA, Guo X, Li H (2014) GhWRKY39, a member of the WRKY transcription factor family in cotton, has a positive role in disease resistance and salt stress tolerance. Plant Cell Tissue Organ Cult 118:17–32Google Scholar
  209. Shingote PR, Kawar PG, Pagariya MC, Kuhikar RS, Thorat AS, Babu K (2015) SoMYB18, a sugarcane MYB transcription factor improves salt and dehydration tolerance in tobacco. Acta Physiol Plant 37:1–12CrossRefGoogle Scholar
  210. Soltész A, Vágújfalvi A, Rizza F, Kerepesi I, Galiba G, Cattivelli L, Coraggio I, Crosatti C (2012) The rice Osmyb4 gene enhances tolerance to frost and improves germination under unfavourable conditions in transgenic barley plants. J Appl Genet 53:133–143PubMedCrossRefGoogle Scholar
  211. Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456PubMedCrossRefGoogle Scholar
  212. Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116PubMedCrossRefGoogle Scholar
  213. Su CF, Wang YC, Hsieh TH, Lu CA, Tseng TH, Yu SM (2010) A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol 153:145–158PubMedPubMedCentralCrossRefGoogle Scholar
  214. Sun L, Zhang HLD, Huang L, Hong Y, Ding XS, Nelson RS, Zhou X, Song F (2013) Functions of rice NAC transcriptional factors, ONAC122 and ONAC131, in defense responses against Magnaporthe grisea. Plant Mol Biol 81:41–56PubMedCrossRefGoogle Scholar
  215. Taj G, Agarwal P, Grant M, Kumar A (2010) MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. Plant Signal Behav 5:1370–1378PubMedPubMedCentralCrossRefGoogle Scholar
  216. Tang W, Charles TM, Newton RJ (2005) Overexpression of the pepper transcription factor CaPF1 in transgenic Virginia pine (Pinus virginiana Mill.) confers multiple stress tolerance and enhances organ growth. Plant Mol Biol 59:603–617PubMedCrossRefGoogle Scholar
  217. Tang Y, Kuang JF, Wang FY, Chen L, Hong KQ, Xiao YY, Xie H, Lu WJ, Chen JY (2013) Molecular characterization of PR and WRKY genes during SA-and MeJA-induced resistance against Colletotrichum musae in banana fruit. Postharvest Biol Technol 79:62–68CrossRefGoogle Scholar
  218. Tang L, Cai H, Zhai H, Luo X, Wang Z, Cui L, Bai X (2014) Overexpression of Glycine soja WRKY20 enhances both drought and salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Cell Tissue Organ Cult 118:77–86Google Scholar
  219. Tao Z, Kou Y, Liu H, Li X, Xiao J, Wang S (2011) OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. J Exp Bot 62:4863–4874PubMedPubMedCentralCrossRefGoogle Scholar
  220. Thirugnanasambantham K, Durairaj S, Saravanan S, Karikalan K, Muralidaran S, Islam VIH (2015) Role of ethylene response transcription factor (ERF) and its regulation in response to stress encountered by plants. Plant Mol Biol Rep 33:347–357CrossRefGoogle Scholar
  221. Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498PubMedPubMedCentralCrossRefGoogle Scholar
  222. Turck F, Zhou A, Somssich IE (2004) Stimulus-dependent, promoter-specific binding of transcription factor WRKY1 to its native promoter and the defense-related gene PcPR1-1 in Parsley. Plant Cell 16:2573–2585Google Scholar
  223. Udvardi MK, Kakar K, Wandrey M, Montanari O, Murray J, Andriankaja A, Zhang J-Y, Benedito V, Hofer JM, Chueng F (2007) Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiol 144:538–549PubMedPubMedCentralCrossRefGoogle Scholar
  224. Vailleau F, Daniel X, Tronchet M, Montillet JL, Triantaphylides C, Roby D (2002) A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive Cell death program in plants in response to pathogen attack. Proc Natl Acad Sci USA 99:10179–10184PubMedPubMedCentralCrossRefGoogle Scholar
  225. Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I (2004) Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J 37:115–127PubMedCrossRefGoogle Scholar
  226. Vannini C, Iriti M, Bracale M, Locatelli F, Faoro F, Croce P, Pirona R, Di Maro A, Coraggio I, Genga A (2006) The ectopic expression of the rice Osmyb4 gene in Arabidopsis increases tolerance to abiotic, environmental and biotic stresses. Physiol Mol Plant Pathol 69:26–42CrossRefGoogle Scholar
  227. Vannini C, Campa M, Iriti M, Genga A, Faoro F, Carravieri S, Rotino GL, Rossoni M, Spinardi A, Bracale M (2007) Evaluation of transgenic tomato plants ectopically expressing the rice Osmyb4 gene. Plant Sci 173:231–239CrossRefGoogle Scholar
  228. Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211PubMedCrossRefGoogle Scholar
  229. Wang D, Amornsiripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2:e123PubMedPubMedCentralCrossRefGoogle Scholar
  230. Wang X, Goregaoker SP, Culver JN (2009a) Interaction of the Tobacco mosaic virus replicase protein with a NAC domain transcription factor is associated with the suppression of systemic host defenses. J Virol 83:9720–9730PubMedPubMedCentralCrossRefGoogle Scholar
  231. Wang Y, Bao Z, Zhu Y, Hua J (2009b) Analysis of temperature modulation of plant defense against biotrophic microbes. MPMI 22:498–506PubMedCrossRefGoogle Scholar
  232. Wang L, Xu C, Wang C, Wang Y (2012a) Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance. BMC Plant Biol 12:118PubMedPubMedCentralCrossRefGoogle Scholar
  233. Wang F, Hou X, Tang J, Wang Z, Wang S, Jiang F, Li Y (2012b) A novel cold-inducible Gene from Pak-choi (Brassica campestris ssp. chinensis), BcWRKY46, enhances the cold, salt and dehydration stress tolerance in transgenic tobacco. Mol Biol Rep 39:4553–4564PubMedCrossRefGoogle Scholar
  234. Wang RK, Cao ZH, Hao YJ (2014) Overexpression of a R2R3 MYB gene MdSIMYB1 increases tolerance to multiple stresses in transgenic tobacco and apples. Physiol Plant 150:76–87PubMedCrossRefGoogle Scholar
  235. Wang G, Zhang S, Ma X, Wang Y, Kong F, Meng Q (2016a) A stress-associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stresses. Physiol Plant 158:45–64PubMedCrossRefGoogle Scholar
  236. Wang W, Yuan Y, Yang C, Geng S, Sun Q, Long L, Cai C, Chu Z, Liu X, Wang G, Du X, Miao C, Zhang X, Cai Y (2016b) Characterization, expression, and functional analysis of a novel NAC gene associated with resistance to Verticillium Wilt and abiotic stress in cotton. Genes Genomes Genet 6:3951–3961Google Scholar
  237. Wang L, Hu Z, Zhu M, Zhu Z, Hu J, Qanmber G, Chen G (2017) The abiotic stress-responsive NAC transcription factor SlNAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.). Plant Cell Tissue Organ Cult 129:161–174Google Scholar
  238. Wu H, Ni Z, Yao Y, Guo G, Sun Q (2008) Cloning and expression profiles of 15 genes encoding WRKY transcription factor in wheat (Triticum aestivem L.). Prog Nat Sci 18:697–705CrossRefGoogle Scholar
  239. Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B, Zhao Q, Zhang L, Li Y, Yang C (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19:1279–1290PubMedCrossRefGoogle Scholar
  240. Wurzinger B, Mair A, Pfister B, Teige M (2011) Cross-talk of calcium-dependent protein kinase and MAP kinase signaling. Plant Signal Behav 6:8–12PubMedPubMedCentralCrossRefGoogle Scholar
  241. Xia N, Zhang G, Liu XY, Deng L, Cai GL, Zhang Y, Wang XJ, Zhao J, Huang LL, Kang ZS (2010a) Characterization of a novel wheat NAC transcription factor Gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Mol Biol Rep 37:3703–3712PubMedCrossRefGoogle Scholar
  242. Xia N, Zhang G, Sun YF, Zhu L, Xu LS, Chen XM, Liu B, Yu YT, Wang XJ, Huang LL (2010b) TaNAC8, a novel NAC transcription factor gene in wheat, responds to stripe rust pathogen infection and abiotic stresses. Physiol Mol Plant Pathol 74:394–402CrossRefGoogle Scholar
  243. Xiao H, Siddiqua M, Braybrook S, Nassuth A (2006) Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. Plant Cell Environ 29:1410–1421PubMedCrossRefGoogle Scholar
  244. Xie Q, Sanz-Burgos AP, Guo H, García JA, Gutiérrez C (1999) GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein. Plant Mol Biol 39:647–656PubMedCrossRefGoogle Scholar
  245. Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745–759PubMedPubMedCentralCrossRefGoogle Scholar
  246. Xu X, Chen C, Fan B, Chen Z (2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18:1310–1326PubMedPubMedCentralCrossRefGoogle Scholar
  247. Xu ZS, Chen M, Li LC, Ma YZ (2008) Functions of the ERF transcription factor family in plants. Botany 86:969–977CrossRefGoogle Scholar
  248. Xu QF, He Q, Li S, Tian ZD (2014) Molecular characterization of StNAC2 in potato and its overexpression confers drought and salt tolerance. Acta Physiol Plant 36:1841–1851CrossRefGoogle Scholar
  249. Xue GP, Way HM, Richardson T, Drenth J, Joyce PA, McIntyre CL (2011) Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol Plant 4:697–712PubMedCrossRefGoogle Scholar
  250. Yan H, Jia H, Chen X, Hao L, An H, Guo X (2014) The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant Cell Physiol 55:2060–2076PubMedCrossRefGoogle Scholar
  251. Yang T, Zhang L, Zhang T, Zhang H, Xu S, An L (2005a) Transcriptional regulation network of cold-responsive genes in higher plants. Plant Sci 169:987–995CrossRefGoogle Scholar
  252. Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K (2005b) Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol 58:585–596PubMedCrossRefGoogle Scholar
  253. Yang W, Liu XD, Chi XJ, Wu CA, Li YZ, Song LL, Liu XM, Wang YF, Wang FW, Zhang C (2011) Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta 233:219–229PubMedCrossRefGoogle Scholar
  254. Yi SY, Kim JH, Joung YH, Lee S, Kim WT, Yu SH, Choi D (2004) The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol 136:2862–2874PubMedPubMedCentralCrossRefGoogle Scholar
  255. Yokotani N, Sato Y, Tanabe S, Chujo T, Shimizu T, Okada K, Yamane H, Shimono M, Sugano S, Takatsuji H (2013) WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. J Exp Bot 64:5085–5097PubMedPubMedCentralCrossRefGoogle Scholar
  256. Yoshii M, Shimizu T, Yamazaki M, Higashi T, Miyao A, Hirochika H, Omura T (2009) Disruption of a novel gene for a NAC-domain protein in rice confers resistance to Rice dwarf virus. Plant J 57:615–625PubMedCrossRefGoogle Scholar
  257. Yu F, Huaxia Y, Lu W, Wu C, Cao X, Guo X (2012) GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutum L.), is involved in disease resistance and plant development. BMC Plant Biol 12:1CrossRefGoogle Scholar
  258. Yuan Y, Qi L, Yang J, Wu C, Liu Y, Huang L (2015) A Scutellaria baicalensis R2R3-MYB gene, SbMYB8, regulates flavonoid biosynthesis and improves drought stress tolerance in transgenic tobacco. Plant Cell Tissue Organ Cult 120:961–972Google Scholar
  259. Zarei A, Körbes AP, Younessi P, Montiel G, Champion A, Memelink J (2011) Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis. Plant Mol Biol 75:321–331PubMedPubMedCentralCrossRefGoogle Scholar
  260. Zhang Y, Wang L (2005) The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol 5:1PubMedPubMedCentralCrossRefGoogle Scholar
  261. Zhang X, Fowler SG, Cheng H, Lou Y, Rhee SY, Stockinger EJ, Thomashow MF (2004a) Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J 39:905–919PubMedCrossRefGoogle Scholar
  262. Zhang H, Huang Z, Xie B, Chen Q, Tian X, Zhang X, Zhang H, Lu X, Huang D, Huang R (2004b) The ethylene-, jasmonate-, abscisic acid- and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta 220:262–270PubMedCrossRefGoogle Scholar
  263. Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y (2009) Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot 60:3781–3796PubMedPubMedCentralCrossRefGoogle Scholar
  264. Zhang L, Zhao G, Xia C, Jia J, Liu X, Kong X (2012a) A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis. J Exp Bot 63:5873–5885PubMedCrossRefGoogle Scholar
  265. Zhang Z, Liu X, Wang X, Zhou M, Zhou X, Ye X, Wei X (2012b) An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense-and stress-related genes. New Phytol 196:1155–1170PubMedCrossRefGoogle Scholar
  266. Zhang XX, Tang YJ, Ma QB, Yang CY, Mu YH, Suo HC, Luo LH, Nian H (2013) OsDREB2A, a rice transcription factor, significantly affects salt tolerance in transgenic soybean. PLoS ONE 8:e83011PubMedPubMedCentralCrossRefGoogle Scholar
  267. Zhang H, Hong Y, Huang L, Li D, Song F (2016) Arabidopsis AtERF014 acts as a dual regulator that differentially modulates immunity against Pseudomonas syringae pv. tomato and Botrytis cinerea. Sci Rep 6:0251Google Scholar
  268. Zhao J, Ren W, Zhi D, Wang L, Xia G (2007) Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress. Plant Cell Rep 26:1521–1528PubMedCrossRefGoogle Scholar
  269. Zhao Y, Chang X, Qi D, Dong L, Wang G, Fan S, Jiang L, Cheng Q, Chen X, Han D, Xu P, Zhang S (2017) A novel soybean ERF transcription factor, GmERF113, increases resistance to Phytophthora sojae infection in soybean. Front Plant Sci 8:299PubMedPubMedCentralGoogle Scholar
  270. Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:592–605PubMedCrossRefGoogle Scholar
  271. Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379:985–989PubMedCrossRefGoogle Scholar
  272. Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6:486–503PubMedCrossRefGoogle Scholar
  273. Zhu ZG, Shi JL, He MY, Cao JL, Wang YJ (2012) Isolation and functional characterization of a transcription factor VpNAC1 from Chinese wild Vitis pseudoreticulata. Biotechnol Lett 34:1335–1342PubMedCrossRefGoogle Scholar
  274. Zou B, Jia Z, Tian S, Wang X, Gou Z, Lü B, Dong H (2013) AtMYB44 positively modulates disease resistance to Pseudomonas syringae through the salicylic acid signalling pathway in Arabidopsis. ‎Funct Plant Biol 40:304–313CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Citrus Research and Education CenterUniversity of FloridaLake AlfredUSA
  2. 2.Escola Superior de Agricultura Luiz de QueirozUniversidade de Sao PauloPiracicabaBrazil
  3. 3.Medicinal Plants and Horticultural Resources DivisionInstitute of Bioresources and Sustainable Development (IBSD)ImphalIndia

Personalised recommendations