Advertisement

Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 131, Issue 3, pp 445–458 | Cite as

Effect of ABA, the auxin antagonist PCIB and partial desiccation on stone pine somatic embryo maturation

  • Elena Carneros
  • Mariano Toribio
  • Cristina Celestino
Original Article

Abstract

Plant regeneration by somatic embryogenesis (SE) was achieved in Pinus pinea L., a forest species of economic importance for its edible seeds, but improvements in the SE protocol are needed to make this technology feasible for breeding programs. In the present study, different maturation treatments on medium with high concentration of sucrose and gelling agent were tested. The effects of abscisic acid (ABA) concentration and culture procedure, the presence of the auxin antagonist 2-(4-chlorophenoxy)2-methylpropionic acid (PCIB), and the partial desiccation of embryonal masses before maturation on the reduction of proliferation and promotion of maturation in six embryogenic lines were evaluated. Increasing ABA concentration neither reduced proliferation nor improved maturation. The highest number of mature embryos was produced with 121 μM ABA in line 1F11 or 161 μM ABA in line 2F47. The culture procedure did not affect growth rate, but monthly subcultures onto maturation medium increased the normal embryo production 13-fold by compared with no subculturing. PCIB decreased proliferation only when it was included during the 12 weeks of the maturation period, and did not improve somatic embryo production. Partial desiccation of embryonal masses between 5 to 26% water loss did not reduce proliferation but enhanced maturation by 1.7 to 4.7-fold compared with the control, depending on the embryogenic line. Up to 256 normal cotyledonary embryos per gram fresh weight from the best line and culture condition were obtained. Somatic embryos germinated and converted to plants at over 70%. Although improvements in maturation are provided, problems such as growth arrest of somatic seedlings and low rates of acclimatization still remain to be solved before SE can be used for large scale plant production in stone pine.

Keywords

Conifers Forest biotechnology Pinus pinea L. Somatic embryogenesis Vegetative propagation 

Notes

Acknowledgements

The authors gratefully thank N. Cleto and Y. Vinuesa for their technical assistance. The suggestions of two anonymous reviewers that largely improved the manuscript are highly appreciated. Funds were provided by the Spanish National R + D Program (Projects AGL2007-66345-CO2-01 and AGL2010-22292-C03-01) and IMIDRA and INIA grants to E. Carneros. We wish to thank the National Forest Breeding Centre “Puerta de Hierro” (Madrid) of the Spanish Ministry of Environment and Dr. Mutke for all their help in collecting plant material.

Author contributions

EC, MT and CC conceived and designed research. EC and CC conducted experiments. EC, CC and MT analyzed results. MT wrote the manuscript with assistance from CC and EC. All authors read and approved the final manuscript.

References

  1. Abrahamsson M, Valladares S, Larsson E, Clapham D, von Arnold S (2012) Patterning during somatic embryogenesis in Scots pine in relation to polar auxin transport and programmed cell death. Plant Cell Tissue Organ Cult 109:391–400. doi:  10.1007/s11240-011-0103-8 CrossRefGoogle Scholar
  2. Alonso P, Moncaleán P, Fernández B, Rodríguez A, Centeno ML, Ordás RJ (2006) An improved micropropagation protocol for stone pine (Pinus pinea L.). Ann For Sci 63:879–885. doi:  10.1051/forest:2006071 CrossRefGoogle Scholar
  3. Álvarez JM, Bueno N, Cortizo M, Ordás RJ (2013) Improving plantlet yield in Pinus pinaster somatic embryogenesis. Scand J For Res 28:613–620. doi:  10.1080/02827581.2013.821516 CrossRefGoogle Scholar
  4. Aronen T, Pehkonen T, Ryynänen L (2009) Enhancement of somatic embryogenesis from immature zygotic embryos of Pinus sylvestris. Scand J For Res 24:372–383. doi:  10.1080/02827580903228862 CrossRefGoogle Scholar
  5. Barthélémy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407. doi: 10.1093/aob/mcl260 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Belz RG, Piepho H-P (2014) Interspecies variability of plant hormesis by the antiauxin PCIB in a laboratory bioassay. J Plant Growth Regul 33:499–512. doi:  10.1007/s00344-013-9400-2 CrossRefGoogle Scholar
  7. Bonga JM (2004) The effect of various culture media on the formation of embryo-like structures in cultures derived from explants taken from mature Larix decidua. Plant Cell Tissue Organ Cult 77:43–48. doi:  10.1023/B:TICU.0000016488.79965.b7 CrossRefGoogle Scholar
  8. Breton D, Harvengt L, Trontin JF, Bouvet A, Favre JM (2005) High subculture frequency, maltose-based and hormone-free medium sustained early development of somatic embryos in maritime pine. In Vitro Cell Dev Biol—Plant 41:494–504. doi:  10.1079/IVP2005671 CrossRefGoogle Scholar
  9. Breton D, Harvengt L, Trontin JF, Bouvet A, Favre JM (2006) Long-term subculture randomly affects morphology and subsequent maturation of early somatic embryos in maritime pine. Plant Cell Tissue Organ Cult 87:95–108. doi:  10.1007/s11240-006-9144-9 CrossRefGoogle Scholar
  10. Carneros E, Celestino C, Klimaszewska K, Park Y-S, Toribio M, Bonga JM (2009) Plant regeneration in Stone pine (Pinus pinea L.) by somatic embryogenesis. Plant Cell Tissue Organ Cult 98:165–178. doi:  10.1007/s11240-009-9549-3 CrossRefGoogle Scholar
  11. Carrasquinho I, Freire J, Rodrigues A, Tomé M (2010) Selection of Pinus pinea L. plus tree candidates for cone production. Ann For Sci 67:814. doi:  10.1051/forest/2010050 CrossRefGoogle Scholar
  12. Chand S, Sahrawat AK (2001) Stimulatory effect of partial desiccation on plant regeneration in indica rice (Oryza sativa L). J Plant Biochem Biotechnol 10:43–47. doi: 10.1007/BF03263105 CrossRefGoogle Scholar
  13. Claeys H, Van Landeghem S, Dubois M, Maleux K, Inzé D (2014) What is stress? Dose-response effects in commonly used in vitro stress assays. Plant Physiol 165:519–527. doi:  10.1104/pp.113.234641 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Drew AP, Ledig FT (1980) Episodic growth and relative shoot: root balance in loblolly pine seedlings. Ann Bot 45:143–148. doi:  10.1093/oxfordjournals.aob.a085805 CrossRefGoogle Scholar
  15. Dyachok JV, Wiweger M, Kenne L, von Arnold S (2002). Endogenous Nod-factor-like signal molecules promote early somatic embryo development in Norway spruce. Plant Physiol 128:523–533. doi:  10.1104/pp.010547 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Egertsdotter U, von Arnold S (1998) Development of somatic embryos in Norway spruce. J Exp Bot 49:155–162. doi:  10.1093/jxb/49.319.155 CrossRefGoogle Scholar
  17. Find J, Grace L, Krogstrup P (2002) Effect of anti-auxins on maturation of embryogenic tissue cultures of Nordmanns fir (Abies nordmanniana). Physiol Plant 116:231–237. doi:  10.1034/j.1399-3054.2002.1160213.x CrossRefPubMedGoogle Scholar
  18. Humánez A, Blasco M, Brisa C, Segura J, Arrillaga I (2012) Somatic embryogenesis from different tissues of Spanish populations of maritime pine. Plant Cell Tissue Organ Cult 111:373–383. doi:  10.1007/s11240-012-0203-0 CrossRefGoogle Scholar
  19. Jalonen P, von Arnold S (1991) Characterization of embryogenic cell lines of Picea abies in relation to their competence for maturation. Plant Cell Rep 10:384–387. doi:  10.1007/BF00232606 CrossRefPubMedGoogle Scholar
  20. Kim YW, Moon HK (2007) Regeneration of plant by somatic embryogenesis in Pinus rigida x P. taeda. In Vitro Cell Dev Biol—Plant 43:335–342. doi:  10.1007/s11627-007-9045-6 CrossRefGoogle Scholar
  21. Klimaszewska K, Cyr DR (2002) Conifer somatic embryogenesis: I. development. Dendrobiology 48:31–39Google Scholar
  22. Klimaszewska K, Park Y-S, Overton C, MacEacheron I, Bonga JM (2001) Optimized somatic embryogenesis in Pinus strobus L. In Vitro Cell Dev Biol—Plant 37:392–399. doi:  10.1007/s11627-001-0069-z CrossRefGoogle Scholar
  23. Klimaszewska K, Hargreaves C, Lelu-Walter M-A, Trontin J-F (2016) Advances in conifer somatic embryogenesis since year 2000. In: Germanà MA, Lambardi M (eds) In vitro embryogenesis in higher plants. Methods in molecular biology vol 1359. Springer Science + Business Media, New York, pp 131–166. doi:  10.1007/978-1-4939-3061-6_7 CrossRefGoogle Scholar
  24. Kong L, von Aderkas P (2007) Genotype effects on ABA consumption and somatic embryo maturation in interior spruce (Picea glauca x engelmanni). J Exp Bot 58:1525–1531. doi: https://doi.org/10.1093/jxb/erm019
  25. Konrádová H, Gricová M, Lipavská H (2003) Cold-induced accumulation of raffinose family oligosaccharides in somatic embryos of Norway spruce (Picea abies). In Vitro Cell Dev Biol—Plant 39:425–427. doi:  10.1079/IVP2003426 CrossRefGoogle Scholar
  26. Krajňáková J, Häggman H, Gömöry D (2009) Effect of sucrose concentration, polyethylene glycol and activated charcoal on maturation and regeneration of Abies cephalonica somatic embryos. Plant Cell Tissue Organ Cult 96:251–262. doi:  10.1007/s11240-008-9482-x CrossRefGoogle Scholar
  27. Kumria R, Sunnichan VG, Das DK, Gupta SK, Reddy VS, Bhatnagar RK, Leelavathi S (2003) High-frequency somatic embryo production and maturation into normal plants in cotton (Gossypium hirsutum) through metabolic stress. Plant Cell Rep 21:635–639. doi:  10.1007/s00299-002-0554-9 PubMedGoogle Scholar
  28. Lelu-Walter MA, Pâques LE (2009) Simplified and improved somatic embryogenesis of hybrid larches (Larix x eurolepis and Larix × marschlinsii). Perspectives for breeding. Ann For Sci 66:104. doi:  10.1051/forest/2008079 CrossRefGoogle Scholar
  29. Lelu-Walter MA, Bernier-Cardou M, Klimaszewska K (2006) Simplified and improved somatic embryogenesis for clonal propagation of Pinus pinaster (Ait.). Plant Cell Rep 25:767–776. doi:  10.1007/s00299-006-0115-8 CrossRefPubMedGoogle Scholar
  30. Lelu-Walter MA, Bernier-Cardou M, Klimaszewska K (2008) Clonal plant production from self- and cross-pollinated seed families of Pinus sylvestris (L.) through somatic embryogenesis. Plant Cell Tissue Organ Cult 92:31–45. doi:  10.1007/s11240-007-9300-x CrossRefGoogle Scholar
  31. Lelu-Walter MA, Thompson D, Harvengt L, Sanchez L, Toribio M, Pâques LE (2013) Somatic embryogenesis in forestry with a focus on Europe: state-of-the-art, benefits, challenges and future direction. Tree Genet Genomes 9:883–899. doi:  10.1007/s11295-013-0620-1 CrossRefGoogle Scholar
  32. Lelu-Walter MA, Klimaszewska K, Miguel C, Aronen T, Hargreaves C, Teyssier C, Trontin JF (2016) Somatic embryogenesis for more effective breeding and deployment of improved varieties in Pinus spp.: Bottlenecks and recent advances. In: Loyola-Vargas V, Ochoa-Alejo N (eds) Somatic embryogenesis: fundamental aspects and applications. Springer, Cham, pp 319–365. doi:  10.1007/978-3-319-33705-0_19 CrossRefGoogle Scholar
  33. Liao YK, Juan I-P (2015) Improving the germination of somatic embryos of Picea morrisonicola Hayata: effects of cold storage and partial drying. J For Res 20:114–124. doi:  10.1007/s10310-014-0445-2 CrossRefGoogle Scholar
  34. Liao YK, Liao CK, Ho YL (2008) Maturation of somatic embryos in two embryogenic cultures of Picea morrisonicola Hayata as affected by alternation of endogenous IAA content. Plant Cell Tissue Organ Cult 93:257–268. doi:  10.1007/s11240-008-9371-3 CrossRefGoogle Scholar
  35. Litvay JD, Verma DC, Johnson MA (1985) Influence of a loblolly pine (Pinus taeda L.). Culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep 4:325–328. doi:  10.1007/BF00269890 CrossRefPubMedGoogle Scholar
  36. Lu J, Vahala J, Pappinen A (2011) Involvement of ethylene in somatic embryogenesis in Scots pine (Pinus sylvestris L.). Plant Cell Tissue Organ Cult 107:25–33. doi:  10.1007/s11240-011-9952-4 CrossRefGoogle Scholar
  37. Malabadi RB, van Staden J (2005) Somatic embryogenesis from vegetative shoot apices of mature trees of Pinus patula. Tree Physiol 25:11–16. doi:  10.1093/treephys/25.1.11 CrossRefPubMedGoogle Scholar
  38. Malabadi RB, Choudhury H, Tandon P (2004) Initiation, maintenance and maturation of somatic embryos from thin apical dome sections in Pinus kesiya (Royle ex. Gord) promoted by partial desiccation and gellan gum. Sci Hort 102:449–459. doi:  10.1016/j.scienta.2004.06.001 CrossRefGoogle Scholar
  39. Maruyama TE, Hosoi Y (2012) Post-maturation treatment improves and synchronizes somatic embryo germination of three species of Japanese pines. Plant Cell Tissue Organ Cult 110:45–52. doi:  10.1007/s11240-012-0128-7 CrossRefGoogle Scholar
  40. Miguel C, Gonçalves S, Tereso S, Marum L, Maroco J, Oliveira M (2004) Somatic embryogenesis from 20 open-pollinated families of Portuguese plus trees of maritime pine. Plant Cell Tissue Organ Cult 76:121–130. doi:  10.1023/B:TICU.0000007253.91771.e3 CrossRefGoogle Scholar
  41. Montalbán IA, De Diego N, Moncaleán P (2010) Bottlenecks in Pinus radiata somatic embryogenesis: improving maturation and germination. Trees 24:1061–1071. doi:  10.1007/s00468-010-0477-y CrossRefGoogle Scholar
  42. Montalbán IA, De Diego N, Aguirre Igartua E, Setién A, Moncaleán P (2011) A combined pathway of somatic embryogenesis and organogenesis to regenerate radiata pine plants. Plant Biotechnol Rep 5:177–186. doi:  10.1007/s11816-011-0171-6 CrossRefGoogle Scholar
  43. Montalbán IA, Setién-Olarra A, Hargreaves CL, Moncaleán P (2013) Somatic embryogenesis in Pinus halepensis Mill.: an important ecological species from the Mediterranean forest. Trees 27:1339–1351. doi:  10.1007/s00468-013-0882-0 CrossRefGoogle Scholar
  44. Mutke S, Gordo J, Gil L (2005) Cone yield characterization of a Stone pine (Pinus pinea L.) clone bank. Silvae Genetica 54:189–197CrossRefGoogle Scholar
  45. Oono Y, Ooura C, Rahman A, Aspuria ET, Hayashi KI, Tanaka A, Uchimiya H (2003) p-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. Plant Physiol 133:1135–1147. doi:  10.1104/pp.103.027847 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Othmani A, Bayoudh C, Drira N, Marrakchi M, Trifi M (2009) Somatic embryogenesis and plant regeneration in date palm Phoenix dactylifera L., cv. Boufeggous is significantly improved by fine chopping and partial desiccation of embryogenic callus. Plant Cell Tissue Organ Cult 97:71–79. doi:  10.1007/s11240-009-9500-7 CrossRefGoogle Scholar
  47. Paquette A, Messier C (2010) The role of plantations in managing the world’s forests in the Anthropocene. Front Ecol Environ 8:27–34. doi:  10.1890/080116 CrossRefGoogle Scholar
  48. Park Y-S (2014) Conifer somatic embryogenesis and multi-varietal forestry. In: Fenning T (ed) Challenges and Opportunities for the World’s Forests in the 21st Century. Forestry Sciences vol 81. Springer, Dordercht, pp 425–439. doi:  10.1007/978-94-007-7076-8_17 CrossRefGoogle Scholar
  49. Park Y-S, Lelu-Walter MA, Harvengt L, Trontin JF, MacEacheron I, Klimaszewska K, Bonga JM (2006) Initiation of somatic embryogenesis in Pinus banksiana. P. strobus. P. pinaster and P. sylvestris at three laboratories in Canada and France. Plant Cell Tissue Organ Cult 86:87–101. doi:  10.1007/s11240-006-9101-7 CrossRefGoogle Scholar
  50. Ramarosandratana A, Harvengt L, Bouvet A, Calvayrac R, Pâques M (2001) Influence of the embryonal-suspensor mass (ESM) sampling on development and proliferation of maritime pine somatic embryos. Plant Sci 160:473–479. doi:  10.1016/S0168-9452(00)00410-6 CrossRefPubMedGoogle Scholar
  51. Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204. doi:  10.1139/b72-026 CrossRefGoogle Scholar
  52. Shimizu M, Miyazawa Y, Fujii N, Takahashi H (2008) p-Chlorophenoxyisobutyric acid impairs auxin response for gravity-regulated peg formation in cucumber (Cucumis sativus) seedlings. J Plant Res 121:107–114. doi:  10.1007/s10265-007-0121-0 CrossRefPubMedGoogle Scholar
  53. Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Organ Cult 74:15–35. doi:  10.1023/A:1023345803336 CrossRefGoogle Scholar
  54. Stasolla C, Kong L, Yeung EC, Thorpe TA (2002) Maturation of somatic embryos in conifers: morphogenesis, physiology, biochemistry, and molecular biology. In Vitro Cell Dev Biol—Plant 38:93–105. doi:  10.1079/IVP2001262 CrossRefGoogle Scholar
  55. StatSoft. Inc (1996) STATISTICA for Windows. Tulsa. OKGoogle Scholar
  56. Suprasanna P, Rupali C, Desai NS, Bapat VA (2008) Partial desiccation augments plant regeneration from irradiated embryogenic cultures of sugarcane. Plant Cell Tissue Organ Cult 92:101–105. doi:  10.1007/s11240-007-9299-z CrossRefGoogle Scholar
  57. von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult 69:233–249. doi:  10.1023/A:1015673200621 CrossRefGoogle Scholar
  58. von Aderkas P, Pattanavibool R, Hristoforoglu K, Ma Y (2003) Embryogenesis and genetic stability in long term megagametophyte-derived cultures of larch. Plant Cell Tissue Organ Cult 75:27–34. doi:  10.1023/A:1024614209524 CrossRefGoogle Scholar
  59. Vondráková Z, Eliášová K, Fischerová L, Vágner M (2011) The role of auxins in somatic embryogenesis of Abies alba. Cent Eur J Biol 6:587–596. doi:  10.2478/s11535-011-0035-7 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Research Institute of Madrid for Food, Agriculture and Rural Development (IMIDRA)Alcalá de Henares, MadridSpain

Personalised recommendations