Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Epigenetics of long-term somatic embryogenesis in Theobroma cacao L.: DNA methylation and recovery of embryogenic potential


In Theobroma cacao L., declined embryogenic potential was observed in regenerated somatic embryos from long-term secondary somatic embryogenesis (SE). In order to explore the relationship between DNA methylation and the long-term secondary SE, the embryogenic potential and global DNA methylation levels in young (12 months-old), aged (36 months-old) and extra somatic embryogenesis (39 months-old) subjected to different 5-Azacytidine (5-azaC) treatments were comparatively assessed. Global DNA methylation levels increased in aged somatic embryos with long-term in vitro culture, but 5-azaC-supplemented treatments resulted in unaltered levels. In addition, DNA methylation pattern during SE was not affected by 5-azaC. DNA methylation increased during SE expression. Interestingly, the extra SE induction showed that aged somatic embryos can recovery the embryogenic potential in treatment supplemented with 5-azaC at specific concentration. The outcome of this study suggested that the long-term SE in cacao induced the decline on embryogenic potential, which can be reversible trough 5-azaC supplementation. Besides, increased DNA methylation levels might be a response to the stress conditions that plant cells were exposed to during SE.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Adu-Gyamfi R, Wetten A, Lopez CMR (2016) Effect of cryopreservation and post-cryopreservation somatic embryogenesis on the epigenetic fidelity of cocoa (Theobroma cacao L.). PloS One 11:e0158857. doi:10.1371/journal.pone.0158857

  2. Alvarez-Venegas R, De la Peña C, Casas-Mollano JA (2014) Epigenetics in plants of agronomic importance: fundamentals and applications. Springer International Publishing, Cham

  3. Boyko A, Kovalchuk I (2008) Epigenetic control of plant stress response. Environ Mol Mutagen 49:61–72. doi:10.1002/em.20347

  4. Bradaï F, Pliego-Alfaro F, Sánchez-Romero C (2016) Long-term somatic embryogenesis in olive (Olea europaea L.): influence on regeneration capability and quality of regenerated plants. Sci Hortic 199:23–31. doi:10.1016/j.scienta.2015.12.010

  5. Breton D, Harvengt L, Trontin JF et al (2006) Long-term subculture randomly affects morphology and subsequent maturation of early somatic embryos in maritime pine. Plant Cell Tissue Organ Cult 87:95–108. doi:10.1007/s11240-006-9144-9

  6. Chakrabarty D, Yu KW, Paek KY (2003) Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng (Eleuterococcus senticosus). Plant Sci 165:61–68. doi:10.1016/S0168-9452(03)00127-4

  7. Che P, Love TM, Frame BR et al (2006) Gene expression patterns during somatic embryo development and germination in maize Hi II callus cultures. Plant Mol Biol. doi:10.1007/s11103-006-9013-2

  8. De-la-Peña C, Nic-Can GI, Galaz-Ávalos RM et al (2015) The role of chromatin modifications in somatic embryogenesis in plants. Front Plant Sci 6:635. doi:10.3389/fpls.2015.00635

  9. Doyle JJ, Doyle JL (1987) A rapid DNA isolation for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

  10. Driver JA, Kuniyuki AH (1984) In vitro propagation of Paradox walnut root stock. HortScience 18:506–509

  11. Dubrovina AS, Kiselev KV (2016) Age-associated alterations in the somatic mutation and DNA methylation levels in plants. Plant Biol 18:185–196

  12. Elhiti M, Stasolla C, Wang A (2013) Molecular regulation of plant somatic embryogenesis. In Vitro Cell Dev Biol-Plant 49:631–642. doi:10.1007/s11627-013-9547-3

  13. Etienne H, Bertrand B (2016) Are genetic and epigenetic instabilities of plant embryogenic cells a fatality? The experience of coffee somatic embryogenesis. Hum Genet Embryol 6:1–5. doi:10.4172/2161-0436.1000136

  14. Fang JY, Wetten A, Adu-Gyamfi R et al (2009) Use of secondary somatic embryos promotes genetic fidelity in cryopreservation of cocoa (Theobroma cacao L.). Agric Food Sci 18:152–159. doi:10.2137/145960609789267579

  15. Fehér A (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228. doi:10.1023/A:1024033216561

  16. Fehér A (2015) Somatic embryogenesis—stress-induced remodeling of plant cell fate. Biochim Biophys Acta-Gene Regul Mech 1849:385–402. doi:10.1016/j.bbagrm.2014.07.005

  17. Finnegan EJ (2010) DNA methylation: a dynamic regulator of genome organization and gene expression in plants. In: Plant developmental biology—biotechnological perspectives. Springer, Berlin, pp 295–323

  18. Fraga MF, Rodriguez R, Canal MJ (2002) Genomic DNA methylation-demethylation during aging and reinvigoration of Pinus radiata. Tree Physiol 22:813–816. doi:10.1093/treephys/22.11.813

  19. Fraga HPF, Vieira LN, Caprestano CA et al (2012) 5-Azacytidine combined with 2,4-D improves somatic embryogenesis of Acca sellowiana (O. Berg) Burret by means of changes in global DNA methylation levels. Plant Cell Rep 31:2165–2176. doi:10.1007/s00299-012-1327-8

  20. Fraga HPF, Vieira LN, Heringer AS, Puttkammer CC, Silveira V, Guerra MP (2016) DNA methylation and proteome profiles of Araucaria angustifolia (Bertol.) Kuntze embryogenic cultures as affected by plant growth regulators supplementation. Plant Cell Tissue Organ Cult 125:353–374

  21. Goffin J, Eisenhauer E (2002) DNA methyltransferase inhibitors-state of the art. Ann Oncol Off J Eur Soc Med Oncol 13:1699–1716

  22. Ikeda Y, Nishimura T (2015) The role of DNA methylation in transposable element silencing and genomic imprinting. In: Nuclear functions in plant transcription, signaling and development. Springer, New York, pp 13–29

  23. Johnston JW, Harding K, Bremner DH et al (2005) HPLC analysis of plant DNA methylation: a study of critical methodological factors. Plant Physiol Biochem 43:844–853. doi:10.1016/j.plaphy.2005.07.015

  24. Kiziltepe T, Hideshima T, Catley L et al (2007) 5-Azacytidine, a DNA methyltransferase inhibitor, induces ATR-mediated DNA double-strand break responses, apoptosis, and synergistic cytotoxicity with doxorubicin and bortezomib against multiple myeloma cells. Mol Cancer Ther 6:1718–1727

  25. Klimaszewska K, Noceda C, Pelletier G et al (2009) Biological characterization of young and aged embryogenic cultures of Pinus pinaster (Ait.). Vitr Cell Dev Biol-Plant 45:20–33. doi:10.1007/s11627-008-9158-6

  26. Konan KE, Durand-Gasselin T, Kouadio YJ et al (2009) In vitro conservation of oil palm somatic embryos for 20 years on a hormone-free culture medium: characteristics of the embryogenic cultures, derived plantlets and adult palms. Plant Cell Rep 29:1–13. doi:10.1007/s00299-009-0787-y

  27. Landey RB, Cenci A, Guyot R et al (2015) Assessment of genetic and epigenetic changes during cell culture ageing and relations with somaclonal variation in Coffea arabica. Plant Cell Tissue Organ Cult 122:517–531. doi:10.1007/s11240-015-0772-9

  28. Li W, Liu H, Cheng ZJ et al (2011) DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling. PLoS Genet 7:e1002243. doi:10.1371/journal.pgen.1002243

  29. LoSchiavo F, Pitto L, Giuliano G et al (1989) DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs. Theor Appl Genet 77:325–331. doi:10.1007/BF00305823

  30. Mahdavi-Darvari F, Noor NM, Ismanizan I (2015) Epigenetic regulation and gene markers as signals of early somatic embryogenesis. Plant Cell Tissue Organ Cult 120:407–422. doi:10.1007/s11240-014-0615-0

  31. Maximova SN, Alemanno L, Young A et al (2002) Efficiency, genotypic variability, and cellular origin of primary and secondary somatic embryogenesis of Theobroma cacao L. In Vitro Cell Dev Biol-Plant 38:252–259. doi:10.1079/IVP2001257

  32. Maximova SN, Young A, Pishak S et al (2005) Integrated system for propagation of Theobroma cacao L. In: Protocol for somatic embryogenesis in woody plants, series: forestry sciences. Springer, Dordrecht, pp 209–227

  33. Maximova SN, Young A, Pishak S, Guiltinan MJ (2008) Field performance of Theobroma cacao L. plants propagated via somatic embryogenesis. In Vitro Cell Dev Biol-Plant 44:487–493. doi:10.1007/s11627-008-9130-5

  34. Miguel C, Marum L (2011) An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot 62:3713–3725. doi:10.1093/jxb/err155

  35. Minyaka E, Niemenak N, Fotso et al (2008) Effect of MgSO4 and K2SO4 on somatic embryo differentiation in Theobroma cacao L. Plant Cell Tissue Organ Cult 94:149–160. doi:10.1007/s11240-008-9398-5

  36. Neelakandan AK, Wang K (2012) Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep 31:597–620. doi:10.1007/s00299-011-1202-z

  37. Park SY, Cho HM, Moon HK et al (2011) Genotypic variation and aging effects on the embryogenic capability of Kalopanax septemlobus. Plant Cell Tissue Organ Cult 105:265–270. doi:10.1007/s11240-010-9862-x

  38. Rival A, Ilbert P, Labeyrie A et al (2013) Variations in genomic DNA methylation during the long-term in vitro proliferation of oil palm embryogenic suspension cultures. Plant Cell Rep 32:359–368. doi:10.1007/s00299-012-1369-y

  39. Rodríguez López CM, Wetten AC, Wilkinson MJ (2010) Progressive erosion of genetic and epigenetic variation in callus-derived cocoa (Theobroma cacao) plants. New Phytol 186:856–868. doi:10.1111/j.1469-8137.2010.03242.x

  40. Sahu PP, Pandey G, Sharma N et al (2013) Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Rep 32:1151–1159. doi:10.1007/s00299-013-1462-x

  41. Santini V, Kantarjian HM, Issa J-P et al (2001) Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann Intern Med 134:573. doi:10.7326/0003-4819-134-7-200104030-00011

  42. Schmidt ÉC, Pereira B, Pontes CLM et al (2012) Alterations in architecture and metabolism induced by ultraviolet radiation-B in the carragenophyte Chondracanthus teedei (Rhodophyta, Gigartinales). Protoplasma 249:353–367. doi:10.1007/s00709-011-0286-1

  43. Smulders MJM, de Klerk GJ (2011) Epigenetics in plant tissue culture. Plant Growth Regul 63:137–146. doi:10.1007/s10725-010-9531-4

  44. Smýkal P, Valledor L, Rodríguez R, Griga M (2007) Assessment of genetic and epigenetic stability in long-term in vitro shoot culture of pea (Pisum sativum L.). Plant Cell Rep 26:1985–1998. doi:10.1007/s00299-007-0413-9

  45. Teyssier C, Maury S, Beaufour M et al (2014) In search of markers for somatic embryo maturation in hybrid larch (Larix × eurolepis): global DNA methylation and proteomic analyses. Physiol Plant 150:271–291. doi:10.1111/ppl.12081

  46. Tokuji Y, Takano S, Tonomura M et al (2011) Influence of 5′-azacitidine on promoting recovery of cell competence for shoot organogenesis in Arabidopsis. Plant Cell Tissue Organ Cult 106:289–297. doi:10.1007/s11240-011-9920-z

  47. Traore A, Maximova SN, Guiltinan MJ (2003) Micropropagation of Theobroma cacao L. using somatic embryo-derived plants. In Vitro Cell Dev Biol-Plant 39:332–337. doi:10.1079/IVP2002409

  48. Wagner D (2003) Chromatin regulation of plant development. Curr Opin Plant Biol 6:20–28

  49. Yamamoto N, Kobayashi H, Togashi T et al (2005) Formation of embryogenic cell clumps from carrot epidermal cells is suppressed by 5-azacytidine, a DNA methylation inhibitor. J Plant Physiol 162:47–54. doi:10.1016/j.jplph.2004.05.013

  50. Zavattieri MA, Frederico AM, Lima M et al (2010) Induction of somatic embryogenesis as an example of stress-related plant reactions. Electron J Biotechnol. doi:10.2225/vol13-issue1-fulltext-4

  51. Zeng F, Zhang X, Cheng L et al (2007) A draft gene regulatory network for cellular totipotency reprogramming during plant somatic embryogenesis. Genomics 90:620–628. doi:10.1016/j.ygeno.2007.07.007

  52. Zhang M, Kimatu JN, Xu K, Liu B (2010) DNA cytosine methylation in plant development. J Genet Genomics 37:1–12. doi:10.1016/S1673-8527(09)60020-5

Download references


This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Proc. 478393/2013-0, and 306126/2013-3), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo a Pesquisa e Inovação do Estado de Santa Catarina (FAPESC, Proc. 2780/2012-4). The authors thank to Central Laboratory of Electron Microscopy (LCME) of the Federal University of Santa Catarina, Brazil.

Author information

LAPQ and MPG: Conceived, designed and conducted the experiments. LAPQ and MPG: Data analysis and manuscript writing. HPFF and LNV: DNA methylation analysis and manuscript review. MPG: Contributed reagents/materials/analysis tools.

Correspondence to Miguel Pedro Guerra.

Additional information

Communicated by M. Angeles Revilla.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pila Quinga, L.A., Pacheco de Freitas Fraga, H., do Nascimento Vieira, L. et al. Epigenetics of long-term somatic embryogenesis in Theobroma cacao L.: DNA methylation and recovery of embryogenic potential. Plant Cell Tiss Organ Cult 131, 295–305 (2017).

Download citation


  • Somatic embryo development
  • 5-Azacytidine
  • DNA methylation inhibitor
  • Subcultures
  • In vitro morphogenesis