Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 129, Issue 1, pp 89–103 | Cite as

Genetic and physiological characterization of three natural allelic variations affecting the organogenic capacity in tomato (Solanum lycopersicum cv. Micro-Tom)

  • Maísa de Siqueira Pinto
  • Chanaka Roshan Abeyratne
  • Vagner Augusto Benedito
  • Lázaro E. P. PeresEmail author
Original Article


The study of allelic variations affecting organogenic capacity is not only relevant for manipulating plant traits but also to understand the fundamental mechanisms involved in plant development. Here, we report the characterization of three tomato (Solanum lycopersicum) loci (RG3C, RG7H and RG8F) whose alleles from its wild relative Solanum pennellii enhance in vitro shoot and root regeneration. S. pennellii alleles were introgressed into tomato cv. Micro-Tom (MT), creating near-isogenic lines. We evaluated the time taken for shoot induction and acquisition of competence by quantifying organogenesis after transferring explants, respectively, from the shoot-inducing medium (SIM) to the basal medium (BM) and from root-inducing medium (RIM) to the SIM. Concomitantly, we monitored the expression of key developmental genes. MT-Rg3C and MT-Rg7H started shoot induction, respectively, at 48 and 24 h earlier than MT and MT-Rg8F, while MT-Rg3C and MT-Rg8F acquired competence 24 h before MT. The impact of MT-Rg3C and MT-Rg8F in the acquisition of competence to assume different fates is consistent with their effect enhancing both shoot and root regeneration. MT-Rg7H seems to affect shoot induction specifically, which is in agreement with the enhanced expression of the shoot-related genes WUSCHEL and SHOOT MERISTEMLESS. Phenotypic characterization of greenhouse-grown plants showed that Rg3C has increased branching when compared to MT. Conversely, the normal branching observed in MT-Rg7H and MT-Rg8F indicates that adventitious in vitro shoot formation and ex vitro axillary bud formation/outgrowth are induced by different genetic pathways. These natural variations are thus useful for breeding highly regenerating varieties without undesirable effects on plant architecture.


Branching Introgression lines Organogenic competence Regeneration Solanum pennellii 



We thank the National Council for Scientific and Technological Development (CNPq) and the São Paulo Research Foundation (FAPESP) for fellowship and scholarship granted, respectively, to L.E.P.P. (307040/2014-3) and M.S.P. (2012/24714-0 and 2014/17553-5). We thank Gilberto B. Kerbauy, Luciano Freschi, Victor A. Vitorello and Daniel S. Moura, from the University of São Paulo, for helpful comments. Adrienne R. Washington (University of Pittsburgh) is thanked for revising the manuscript. We also thank Cassia R. F. Figueiredo and Francisco Vitti for laboratory and greenhouse assistance.

Author contributions

MSP was responsible for the conception and design of experiments, data analysis, drafting and editing of the manuscript. CRA contributed with RT-qPCR experiments and revised the manuscript. VAB was responsible for conception and design of RT-qPCR experiments, data analysis and manuscript editing. LEPP oversaw the study conception and design and edited the manuscript. All authors read and approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11240_2016_1159_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (PDF 1288 KB)


  1. Ambawat S, Sharma P, Yadav NR, Yadav RC (2013) MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants 19:307–321. doi: 10.1007/s12298-013-0179-1 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arikita FN, Azevedo MS, Scotton DC, Pinto MS, Figueira A, Peres LEP (2013) Natural genetic variation controlling the competence to form adventitious roots and shoots from the tomato wild relative Solanum pennellii. Plant Sci 199/200:121–130. doi: 10.1016/j.plantsci.2012.11.005 CrossRefGoogle Scholar
  3. Atta R, Laurens L, Boucheron-Dubuisson E, Guivarc’h A, Carnero E, Giraudatpautot V, Rech P, Chriqui D (2009) Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J 57:626–644. doi: 10.1111/j.1365-313X.2008.03715.x CrossRefPubMedGoogle Scholar
  4. Auer CA, Motyka M, Brezinova A, Kaminek M (1999) Endogenous cytokinin accumulation and cytokinin oxidase activity during shoot organogenesis of Petunia hybrida. Physiol Plant 105:141–147. doi: 10.1034/j.1399-3054.1999.105121.x CrossRefGoogle Scholar
  5. Azevedo MS (2012) Mapping and gene expression associated with the process of organogenic competence acquisition in tomato (Solanum lycopersicum L. cv Micro-Tom). Dissertation, University of São Paulo, (in Portuguese). doi: 10.11606/D.64.2012.tde-20092013-093913
  6. Bao Y, Dharmawardhana P, Mockler TC, Strauss SH (2009) Genome scale transcriptome analysis of shoot organogenesis in Populus. BMC Plant Biol 9:132. doi: 10.1186/1471-2229-9-132 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Berger Y, Harpaz-Saad S, Brand A, Melnik H, Sirding N, Alvarez JP, Zinder M, Samach A, Eshed Y, Ori N (2009) The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development 136:823–832.doi: 10.1242/dev.031625 CrossRefPubMedGoogle Scholar
  8. Bharathan G, Janssen B-J, Kellogg EA, Sinha N (1999) Phylogenetic relationships and evolution of the KNOTTED class of plant homeodomain proteins. Mol Biol Evol 16:553–563CrossRefPubMedGoogle Scholar
  9. Bielenberg DG, Wang Y, Li Z, Zhebentyayeva E, Fan S, Reighard GL, Scorza R, Abbott SG (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica(L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genom 4:495. doi: 10.1007/s11295-007-0126-9 CrossRefGoogle Scholar
  10. Busch BL, Schmitz G, Rossmann S, Piron F, Ding J, Bendahmane A, Theres K (2011) Shoot branching and leaf dissection in tomato are regulated by homologous gene modules. Plant Cell 23:3595–3609. doi: 10.1105/tpc.111.087981 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Carvalho RF, Campos ML, Pino LE, Crestana SL, Zsögön A, Lima JE, Benedito VA, Peres LEP (2011) Convergence of developmental mutants into a single tomato model system: ‘Micro-Tom’ as an effective toolkit for plant development research. Plant Methods 7:18. doi: 10.1186/1746-4811-7-18 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cary A, Uttamchandani SJ, Smets R, Onckelen HAV, Howell SH (2001) Arabidopsis mutants with increased organ regeneration in tissue culture are more competent to respond to hormonal signals. Planta 213:700–707. doi: 10.1007/s004250100565 CrossRefPubMedGoogle Scholar
  13. Cary AJ, Che P, Howell SH (2002) Developmental events and shoot apical meristem gene expression patterns during shoot development in Arabidopsis thaliana. Plant J 32:867–877. doi: 10.1046/j.1365-313X.2002.01479.x CrossRefPubMedGoogle Scholar
  14. Che P, Lall S, Nettleton D, Howell SH (2006) Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiol 141:620–637. doi: 10.1104/pp.106.081240 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Che P, Lall S, Howell SH (2007) Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta 226:1183–1194. doi: 10.1007/s00425-007-0565-4 CrossRefPubMedGoogle Scholar
  16. Chitwood DH, Kumar R, Headland LR, Ranjan A, Covington MF, Ichihashi Y, Fulop D, Jiménez-Gómez JM, Peng J, Maloof JN, Sinha NR (2013) A quantitative genetic basis for leaf morphology in a set of precisely defined tomato introgression lines. Plant Cell 25:2465–2481. doi: 10.1105/tpc.113.112391 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Christianson ML, Warnick DA (1985) Temporal requirement for phytohormone balance in the control of organogenesis in vitro. Dev Biol 112:494–497. doi: 10.1016/0012-1606(85)90423-3 CrossRefGoogle Scholar
  18. Ckurshumova W, Smirnova T, Marcos D, Zayed Y, Berleth T (2014) Irrepressible MONOPTEROS/ARF5 promotes de novo shoot formation. New Phytol 204:556–566. doi: 10.1111/nph.13014 CrossRefPubMedGoogle Scholar
  19. De Smet I, Lau S, Voss U, Vanneste S, Benjamins R, Rademacher EH, Schlereth A, De Rybel B, Vassileva V, Grunewald W, Naudts M, Levesque MP, Ehrismann JS, Inzé D, Luschnig C, Benfey PN, Weijers D, Van Montagu MC, Bennett MJ, Jürgens G, Beeckman T (2010) Bimodular auxin response controls organogenesis in Arabidopsis. Proc Natl Acad Sci USA 107:2705–2710. doi: 10.1073/pnas.0915001107 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dlamini Z, Rupnarain C, Naicker S, Hull R, Mbita Z (2016) Expression analysis and association of RBBP6 with apoptosis in colon cancers. J Mol Histol 47:169–182. doi: 10.1007/s10735-016-9663-6 CrossRefPubMedGoogle Scholar
  21. Fray RG, Grierson D (1993) Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol Biol 22:589–602. doi: 10.1007/BF00047400 CrossRefPubMedGoogle Scholar
  22. Gallois J-L, Woodward C, Reddy GV, Sablowski R (2002) Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development 129:3207–3217. doi: 10.3410/f.1007679.100255 PubMedGoogle Scholar
  23. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirement of suspension cultures of soybean root cells. Exp Cell Res 50:151–158. doi: 10.1016/0014-4827(68)90403-5 CrossRefPubMedGoogle Scholar
  24. Gerszberg A, Hnatuszko-Konka K, Kowalczyk T, Kononowicz AK (2015) Tomato (Solanum lycopersicum L.) in the service of biotechnology. Plant Cell Tissue Organ Cult 120:881–902. doi: 10.1007/s11240-014-0664-4 CrossRefGoogle Scholar
  25. Gilissen LJ, Van Staveren MJ, Hakkert JC, Smulders MJM (1996) Competence for regeneration during tobacco internodal development. Plant Physiol 111:1243–1250CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hake S, Smith HM, Holtan H, Magnani E, Mele G, Ramirez J (2004) The role ofKNOXgenes in plant development. Annu Rev Cell Dev Biol 20:125–151. doi: 10.1146/annurev.cellbio.20.031803.093824 CrossRefPubMedGoogle Scholar
  27. Harlan JR (1992) Domestication of vegetatively reproduced crops. In: Harlan JR (ed) Crops and Man, 2nd ed. ASA, CSSA, Madison, pp 130–133Google Scholar
  28. Heldens, JWG (2010) Promoter sequence and gene construct for increasing crop yield in tomato. U.S. Patent US 2010/0212046A1Google Scholar
  29. Huang X, Effgen S, Meyer RC, Theres K, Koornneef M (2012) Epistatic natural allelic variation reveals a function of AGAMOUS-LIKE6 in axillary bud formation in Arabidopsis. Plant Cell 24:2364–2379. doi: 10.1105/tpc.112.099168 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ikeda Y, Banno H, Niu QW, Howell SH, Chua NH (2006) The ENHANCER OF SHOOT REGENERATION 2 gene in Arabidopsis regulates CUP-SHAPED COTYLEDON 1 at the transcriptional level and controls cotyledon development. Plant Cell Physiol 47:1443–1456. doi: 10.1093/pcp/pcl023 CrossRefPubMedGoogle Scholar
  31. Janssen B-J, Lund L, Sinha N (1998) Overexpression of a homeobox gene, LeT6 reveals indeterminate features in the tomato compound leaf. Plant Physiol 117:771–786. doi: 10.1104/pp.117.3.771 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kauffman JB (1991) Survival by sprouting following fire in tropical forests of the Eastern Amazon. Biotropica 23:219–224. doi: 10.2307/2388198 CrossRefGoogle Scholar
  33. Koornneef M, Bade J, Hanhart CJ, Horsman K, Schel J, Soppe W, Verkek R, Zabel P (1993) Characterization and mapping of a gene controlling shoot regeneration in tomato. Plant J 3:131–141. doi: 10.1111/j.1365-313X.1993.tb00016.x CrossRefGoogle Scholar
  34. Li S (2015) The Arabidopsis thaliana TCP transcription factors: a broadening horizon beyond development. Plant Signal Behav 10:e1044192. doi: 10.1080/15592324.2015.1044192 PubMedPubMedCentralGoogle Scholar
  35. Li Z, Peng R, Tian Y, Han H, Xu J, Yao Q (2016) Genome-wide identification and analysis of the MYB transcription factor superfamily in Solanum lycopersicum. Plant Cell Physiol 57:1657–1677. doi: 10.1093/pcp/pcw091 CrossRefPubMedGoogle Scholar
  36. Lima JE, Carvalho RF, Tulmann Neto A, Figueira A, Peres LEP (2004) Micro-MsK: a tomato genotype with miniature size, short life cycle and improved in vitro shoot regeneration. Plant Sci 167:753–757. doi: 10.1016/j.plantsci.2004.05.023 CrossRefGoogle Scholar
  37. Lima JE, Benedito VA, Figueira A, Peres LEP (2009) Callus, shoot and hairy root formation in vitro as affected by the sensitivity to auxin and ethylene in tomato mutants. Plant Cell Rep 28:1169–1177. doi: 10.1007/s00299-009-0718-y CrossRefPubMedGoogle Scholar
  38. Liu Y-S, Gur A, Ronen G, Causse M, Damidaux R, Buret M, Hirschberg J, Zamir D (2003) There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotechnol J 1:195–207. doi: 10.1046/j.1467-7652.2003.00018.x CrossRefPubMedGoogle Scholar
  39. Lombardi-Crestana S, Azevedo MS, Silva GFF, Pino LE, Appezzato-Da-Glória B, Figueira A, Nogueira FTS, Peres LEP (2012) The tomato (Solanum lycopersicum cv. Micro-Tom) natural genetic variation Rg1 and the DELLA mutant procera control the competence necessary to form adventitious roots and shoots. J Exp Bot 63:5689–5703. doi: 10.1093/jxb/ers221 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Matsuo N, Makino M, Banno H (2011) Arabidopsis ENHANCER OF SHOOT REGENERATION (ESR)1 and ESR2 regulate in vitro shoot regeneration and their expressions are differentially regulated. Plant Sci 181:39–46. doi: 10.1016/j.plantsci.2011.03.007 CrossRefPubMedGoogle Scholar
  41. Moela P, Choene MM, Motadi LR (2014) Silencing RBBP6 (Retinoblastoma binding protein 6) sensitizes breast cancer cells MCF7 to staurosporine and camptothecin-induced cell death. Immunobiology 219:593–601. doi: 10.1016/j.imbio.2014.03.002 CrossRefPubMedGoogle Scholar
  42. Morris SE, Turnbull CGN, Murfet IC, Beveridge CA (2001) Mutational analysis of branching in pea. Evidence that Rms1 and Rms5 regulate the same novel signal. Plant Physiol 126:1205–1213. doi: 10.1104/pp.126.3.1205 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Motadi LR, Bhoola KD, Dlamini Z (2011) Expression and function of retinoblastoma binding protein 6 (RBBP6) in human lung cancer. Immunobiology 216:1065–1073. doi: 10.1016/j.imbio.2011.05.004 CrossRefPubMedGoogle Scholar
  44. Motte H, Verstraeten I, Werbrouck S, Geelen D (2011) CUC2 as an early marker for regeneration competence in Arabidopsis root explants. J Plant Physiol 168:1598–1601. doi: 10.1016/j.jplph.2011.02.014 CrossRefPubMedGoogle Scholar
  45. Motte H, Vereecke D, Geelen D, Werbrouck S (2014) The molecular path to in vitro shoot regeneration. Biotechnol Adv 32:107–121. doi: 10.1016/j.biotechadv.2013.12.002 CrossRefPubMedGoogle Scholar
  46. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  47. Parnis A, Cohen O, Gutfinger T, Hareven D, Zamir D, Lifschitz E (1997) The dominant developmental mutants of tomato, Mouse-ear and Curl, are associated with distinct modes of abnormal transcriptional regulation of a knotted gene. Plant Cell 9:2143–2158. doi: 10.1105/tpc.9.12.2143 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Peres LEP, Morgante PG, Van Sluys M-A, Kraus JE, Vechi C (2001) Shoot regeneration capacity from roots and transgenic hairy roots of different tomato cultivars and wild related species. Plant Cell Tissue Organ Cult 65:37–44. doi: 10.1023/A:1010631731559 CrossRefGoogle Scholar
  49. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007. doi: 10.1093/nar/29.9.e45 CrossRefGoogle Scholar
  50. Pino LE, Lombardi-Crestana S, Azevedo MS, Scotton DC, Borgo L, Quecini V, Figueira A, Peres LEP (2010) The Rg1 allele as a valuable tool for genetic transformation of the tomato Micro-Tom model system. Plant Methods 6:23. doi: 10.1186/1746-4811-6-23 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Prakash P, Kumar PP (2002) PkMADS1 is a novel MADS box gene regulating adventitious shoot induction and vegetative shoot development in Paulownia kawakamii. Plant J 29:141–151. doi: 10.1046/j.0960-7412.2001.01206.x CrossRefPubMedGoogle Scholar
  52. Santos AM, Oliver MJ, Sánchez AM, Payton PR, Gomes JP, Miguel C, Oliveira MM (2009) An integrated strategy to identify key genes in almond adventitious shoot regeneration. J Exp Bot 60:4159–4173. doi: 10.1093/jxb/erp250 CrossRefPubMedGoogle Scholar
  53. Schmitz G, Tillmann E, Carriero F, Fiore C, Cellini F, Theres K (2002) The tomato blind gene encodes a MYB transcription factor that controls the formation of lateral meristems. P Natl Acad Sci USA 99:1064–1069. doi: 10.1073/pnas.022516199 CrossRefGoogle Scholar
  54. Shi B, Zhang C, Tian C, Wang J, Wang Q, Xu T, Xu Y, Ohno C, Sablowski R, Heisler MG, Theres K, Wang Y, Jiao Y (2016) Two-step regulation of a meristematic cell population acting in shoot branching in Arabidopsis. PLoS Genet 12(7):e1006168. doi: 10.1371/journal.pgen.1006168 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–231PubMedGoogle Scholar
  56. Stam P, Zeven AC (1981) The theoretical proportion of the donor genome in near-isogenic lines of self-fertilizers bred by backcrossing. Euphytica 30:227–238CrossRefGoogle Scholar
  57. Sugimoto K, Jiao Y, Meyerowitz EM (2010) Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev Cell 18:463–471. doi: 10.1016/j.devcel.2010.02.004 CrossRefPubMedGoogle Scholar
  58. Sugimoto K, Gordon SP, Meyerowitz EM (2011) Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? Trends Cell Biol 21:212–218. doi: 10.1016/j.tcb.2010.12.004 CrossRefPubMedGoogle Scholar
  59. Sussex IM (2008) The scientific roots of modern plant biotechnology. Plant Cell 20:1189–1198. doi: 10.1105/tpc.108.058735 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, Winter K-U, Saedler H (2000) A short history of MADS-box genes in plant. Plant Mol Biol 42:115. doi: 10.1023/A:1006332105728 CrossRefPubMedGoogle Scholar
  61. Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641. doi: 10.1038/nature11119 CrossRefGoogle Scholar
  62. Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971. doi: 10.1105/tpc.9.11.1963 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Ulmasov T, Hagen G, Guilfoyle TJ (1999) Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci USA 96:5844–5849. doi: 10.1073/pnas.96.10.5844 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Valvekens D, Van Montagu M, Van Lijsebettens M (1988) Agrobacterium tumefaciens mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85:5536–5540. doi: 10.1073/pnas.85.15.5536 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Van Der Meijden E, Wijn M, Verkaar HJ (1998) Defense and regrowth, alternative plant strategies in the struggle against herbivores. Oikos 51:355–363. doi: 10.2307/3565318 CrossRefGoogle Scholar
  66. Vicente MH, Zsögön A, de Sá AFL, Ribeiro RV, Peres LEP (2015) Semi-determinate growth habit adjusts the vegetative-to-reproductive balance and increases productivity and water-use efficiency in tomato (Solanum lycopersicum). J Plant Physiol 177:11–19. doi: 10.1016/j.jplph.2015.01.003 CrossRefPubMedGoogle Scholar
  67. Zhao Q, Fisher R, Auer C (2002) Developmental phases and STM expression during Arabidopsis shoot organogenesis. Plant Growth Regul 37:223–231. doi: 10.1023/A:1020838712634 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Laboratory of Hormonal Control of Plant Development, Department of Biological SciencesEscola Superior de Agricultura ‘Luiz de Queiroz’ (ESALQ), University of São Paulo (USP)PiracicabaBrazil
  2. 2.Division of Plant and Soil SciencesWest Virginia UniversityMorgantownUSA

Personalised recommendations