Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 128, Issue 3, pp 705–714 | Cite as

Improved production of quinone-methide triterpenoids by Cheiloclinium cognatum root cultures: possibilities for a non-destructive biotechnological process

  • Edieidia S. Pina
  • Juliana S. Coppede
  • Silvia H. Taleb Contini
  • Eduardo J. Crevelin
  • Luciano M. Lião
  • Bianca W. Bertoni
  • Suzelei C. França
  • Ana Maria S. Pereira
Original Article

Abstract

Quinone-methide triterpenoids (QMTs) derived from species of the family Celastraceae have long been used as anti-cancer, anti-inflammatory, anti-oxidant, anti-malarial and insecticidal agents. The main problem in producing QMTs on a large-scale from natural sources is the low amounts (<0.4% dry weight) produced by plants grown in vivo. The aim of this study was to compare the levels of QMTs accumulated by roots of Cheiloclinium cognatum cultured in vitro with those of in vivo plants aged 6 months to 10 years. The highest levels of QMTs produced by in vivo specimens were found in root bark of 10-year old plants, but in vitro cultured roots produced 3.52-times more 22β-hydroxy-maytenin and 11.46-times more maytenin. Most importantly, the cultured roots excreted QMTs into the growth medium, thereby facilitating the large-scale production, extraction and purification of these bioactive compounds by means of a continuous and non-destructive bioprocess that would preserve the root cultures.

Keywords

Cheiloclinium cognatum Quinone-methide triterpenoids Maytenin 22β-Hydroxy-maytenin Root cultures Large-scale production 

Abbreviations

ABC

ATP-binding cassette

APCI

Atmospheric pressure chemical ionization

HPLC

High performance liquid chromatography

IBA

Indole-3-butyric acid

MS

Mass spectroscopy

PAD

Photodiode array detector

QMT

Quinone-methide triterpenoid

RIMS

Root-inducing Murashige and Skoog medium

RP

Reverse phase

Supplementary material

11240_2016_1151_MOESM1_ESM.docx (685 kb)
Supplementary material 1 (DOCX 684 KB)

References

  1. Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98CrossRefPubMedGoogle Scholar
  2. Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information super- highway. Trends Plant Sci 9:26–32CrossRefPubMedGoogle Scholar
  3. Bolton JL (2014) Quinone methide bioactivation pathway: contribution to toxicity and/or cytoprotection? Curr Org Chem 18:61–69CrossRefPubMedPubMedCentralGoogle Scholar
  4. Borroto J, Coll J, Rivas M, Blanco M, Concepción O, Tandrón YA, Hernández M, Trujillo R (2008) Anthraquinones from in vitro root culture of Morinda royoc L. Plant Cell Tissue Organ Cult 94:181–187CrossRefGoogle Scholar
  5. Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851CrossRefGoogle Scholar
  6. Brinker AM, Ma J, Lipsky PE, Raskin I (2007) Medicinal chemistry and pharmacology of genus Tripterygium (Celastraceae). Phytochemistry 68:732–766CrossRefPubMedGoogle Scholar
  7. Brüning R, Wagner H (1978) Ubersicht uber die celastraceen Inhalstsstoffe chemie, cehmotaxonomie, biosynthese, pharmakologie. Phytochemistry 17:1821–1858CrossRefGoogle Scholar
  8. Buffa Filho W, Bolzani VS, Furlan M, Pereira SIV, Pereira AMS, França SC (2004) In vitro propagation of M. ilicifolia (Celastraceae) as potential source for antitumoral and antioxidant quinomethide triterpenes production. A rapid quantitative method for their analysis by reverse-phase high-performance liquid chromatography. Arkivoc 2004:137–146Google Scholar
  9. Cai Z, Kastell A, Knorr D, Smetanska I (2012) Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Rep 31:461–477CrossRefPubMedGoogle Scholar
  10. Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L (2010) Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329:1–25CrossRefGoogle Scholar
  11. CHEMnetBASE (2015) Dictionary of Natural Products. http://dnp.chemnetbase.com/dictionary-search.do?method=view&id=11606027&si=. Accessed 20 Nov 2015
  12. Chong TM, Abdullah MA, Lai OM, Nor’Aini FM, Lajis NH (2005) Effective elicitation factors in Morinda elliptica cell suspension culture. Process Biochem 40:3397–3405CrossRefGoogle Scholar
  13. Coppede JS, Pina ES, Paz TA, Fachin AL, Marins MA, Bertoni BW, França SC, Pereira MAS (2014) Cell cultures of Maytenus ilicifolia Mart. are richer sources of quinone-methide triterpenoids than plant roots in natura. Plant Cell Tissue Organ Cult 118:33–43CrossRefGoogle Scholar
  14. Corsino J, Alécio AC, Ribeiro ML, Furlan M, Pereira AMS, Duarte IB, França SC (1998) Quantitative determination of maitenin and 22β-hydroxymaitenin in callus of Maytenus aquifolium (Celastraceae) by reverse phase high performance liquid chromatography. Phytochem Anal 9:245–247CrossRefGoogle Scholar
  15. Costa EA, Santos LR, Pontes IS, Matos LG, Silva GA, Lião LM (2007) Analgesic and anti-inflammatory effects of Cheiloclinium cognatum root barks. Ver Bras Farmacogn 17:508–513CrossRefGoogle Scholar
  16. Deeb D, Gao X, Liu YB, Pindolia K, Gautam SC (2014) Pristimerin, a quinonemethide triterpenoid, induces apoptosis in pancreatic cancer cells through the inhibition of pro-survival Akt/NF-κB/mTOR signaling proteins and anti-apoptotic Bcl-2. Int J Oncol 44:1707–1715PubMedPubMedCentralGoogle Scholar
  17. Ferreira DF (2011) Sisvar: a computer statistical analysis system. Ciênc Agrotecnol 35:1039–1042Google Scholar
  18. Jeller AH, Silva DH, Lião LM, Bolzani VS, Furlan M (2004) Antioxidant phenolic and quinonemethide triterpenes from Cheiloclinium cognatum. Phytochemistry 65:1977–1982CrossRefPubMedGoogle Scholar
  19. Kutney JP, Hewitt GM, Kurihara T, Salisbury PJ, Sindelar RD, Stuart KL, Townsley PM, Chalmers WT, Jacoli GG (1981) Cytotoxic diterpenes triptolide, tripdiolide, and cytotoxic triterpenes from tissue cultures of Tripterygium wilfordii. Can J Chem 59:2677–2683CrossRefGoogle Scholar
  20. Li PP, He W, Yuan PF, Song SS, Lu JT, Wei W (2015) Celastrol induces mitochondria-mediated apoptosis in hepatocellular carcinoma Bel-7402 cells. Am J Chin Med 43:137–148CrossRefPubMedGoogle Scholar
  21. Liu YB, Gao X, Deeb D, Brigolin C, Zhang Y, Shaw J, Pindolia K, Gautam SC (2014) Ubiquitin-proteasomal degradation of antiapoptotic survivin facilitates induction of apoptosis in prostate cancer cells by pristimerin. Int J Oncol 45:1735–1741PubMedPubMedCentralGoogle Scholar
  22. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 1:437–496Google Scholar
  23. Neumann G, Roemheld V (2002) Root-induced changes in the availability of nutrients in the rhizosphere. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 617–649CrossRefGoogle Scholar
  24. Paz TA, dos Santos VA, Inácio MC, Pina ES, Pereira AMS, Furlan M (2013) Production of the quinone-methide triterpene maytenin by in vitro adventitious roots of Peritassa campestris (Cambess.) A.C. Sm. (Celastraceae) and rapid detection and identification by APCI-IT-MS/MS. Biomed Res Int 2013:485837PubMedPubMedCentralGoogle Scholar
  25. Pina ES, Silva DB, Teixeira SP, Coppede JS, Furlan M, França SC, Lopes NP, Pereira AMS, Lopes AA (2016) Mevalonate-derived quinonemethide triterpenoid from in vitro roots of Peritassa laevigata and their localization in root tissue by MALDI imaging. Sci Rep 6:22627CrossRefPubMedPubMedCentralGoogle Scholar
  26. Roberts SC, Naill M, Gibson DM, Shuler ML (2003) A simple method for enhancing paclitaxel release from Taxus canadensis cell suspension cultures utilizing cell wall digesting enzymes. Plant Cell Rep 2:1217–1220CrossRefGoogle Scholar
  27. Robins RI, Payne J, Rhodes MJC (1986) Production of anthraquinone by cell suspension cultures of Cinchona ledgeriana. Phytochemistry 25:2327–2334CrossRefGoogle Scholar
  28. Sirikantaramas S, Yamazaki M, Saito K (2008) Mechanisms of resistance to self-produced toxic secondary metabolites in plants. Phytochem Rev 7:467–477CrossRefGoogle Scholar
  29. Su P, Cheng Q, Wang X, Cheng X, Zhang M, Tong Y, Li F, Gao W, Huang L (2014) Characterization of eight terpenoids from tissue cultures of the Chinese herbal plant, Tripterygium wilfordii, by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Biomed Chromatogr 28:1183–1192CrossRefPubMedGoogle Scholar
  30. Yang H, Landis-Piwowar KR, Lu D, Yuan P, Li L, Reddy GP, Yuan X, Dou QP (2008) Pristimerin induces apoptosis by targeting the proteasome in prostate cancer cells. J Cell Biochem 103:234–244CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Edieidia S. Pina
    • 1
  • Juliana S. Coppede
    • 1
  • Silvia H. Taleb Contini
    • 1
  • Eduardo J. Crevelin
    • 2
  • Luciano M. Lião
    • 3
  • Bianca W. Bertoni
    • 1
  • Suzelei C. França
    • 1
  • Ana Maria S. Pereira
    • 1
  1. 1.Departamento de Biotecnologia em Plantas MedicinaisUniversidade de Ribeirão PretoRibeirão PretoBrazil
  2. 2.Faculdade de Filosofia, Ciências e Letras de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
  3. 3.Instituto de QuímicaUniversidade Federal de GoiásGoiâniaBrazil

Personalised recommendations