Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 128, Issue 2, pp 357–368 | Cite as

Elevated CO2 improves growth, modifies anatomy, and modulates essential oil qualitative production and gene expression in Lippia alba (Verbenaceae)

  • Diego Silva Batista
  • Kamila Motta de Castro
  • Andréa Dias Koehler
  • Brenda Neves Porto
  • Anderson Rodrigo da Silva
  • Vinicius Carius de Souza
  • Maria Luisa Teixeira
  • Maria das Graças Cardoso
  • Marcelo de Oliveira Santos
  • Lyderson Facio Viccini
  • Wagner Campos Otoni
Original Article

Abstract

Carbon dioxide (CO2) concentrations have grown in recent decades and will continue to increase during this century, affecting plant physiology and development. Aiming to evaluate the effect of CO2 elevation on growth, anatomy, essential oil qualitative production and expression of genes related to biosynthesis of these compounds, three chemotypes of Lippia alba (BGEN-01, BGEN-02 and BGEN-42) were cultivated in vitro. Firstly, we focused on the effects of gas exchange in the essential oil profile by comparing three CO2 exchange rates: 14, 21 and 25 µL L−1 s−1 CO2. Continuing, in addition to the previous 14 and 25 µL L−1 s−1 CO2 treatments, plants were placed into acrylic chambers with continuous forced air at 360 and 1000 μL L−1 of CO2; an additional control without allowing gas exchange was added inside the chambers, totaling five treatments with 6 replicates. After 45 days, essential oil profile, histochemical, stomatal density, growth evaluation analyses and transcript analysis were performed. The enrichment with CO2 enhanced plant dry and fresh weight, total chlorophylls and carotenoids in BGEN-01 and BGEN-02, and also increased stomatal density and lignin content for all chemotypes. The multivariate analysis showed that the essential oil profile varied, not only among the different chemotypes, but also within BGEN-01 and BGEN-02 treatments. The qualitative production was different in the treatments with forced air renovation and CO2 enrichment. Regarding the gene expression analyses, Farnesyl pyrophosphate synthase (LaFPPS) and Geranyl pyrophosphate synthase (LaGPPS) did not vary, except for the treatments with forced air ventilation (360 and 1000 µL L−1) in the BGEN-01, which had LaFPPS upregulated. Geraniol synthase (LaGES) was upregulated in all BGEN-02 treatments and for BGEN-01 treatments with 360 and 1000 µL L−1 CO2. Nerolidol/Linalool synthase (LaNES/LIS) was upregulated only in the BGEN-01, in the 360 and 1000 µL L−1 CO2 treatments. These findings provide a better understanding of how CO2 regulates secondary metabolites production, providing a basis to clarify the pathway regulation, further enabling the targeted production of essential oils with greater economic and industrial interest.

Keywords

CO2 enrichment Gas exchange Geraniol synthase Nerolidol synthase RT-qPCR 

References

  1. AbdElgawad H, Peshev D, Zinta G, Van den Ende W, Janssens IA, Asard H (2014) Climate extreme effects on the chemical composition of temperate grassland species under ambient and elevated CO2: a comparison of fructan and non-fructan accumulators. PloS One 9(3):e92044CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adams RP (2007) Identification of essential oils components by gas chromatography/mass spectroscopy, (4 ed.) Carol Stream: AlluredGoogle Scholar
  3. Agência Nacional de Vigilância Sanitária (2010) Farmacopeia Brasileira. (5 ed.) Anvisa, Brasília, p. 198–199.Google Scholar
  4. Aguiar TV, Sant’anna-Santos BF, Azevedo AA, Ferreira RS (2007) ANATI QUANTI: software de análises quantitativas para estudos em anatomia vegetal. Planta Daninha 25:649–659CrossRefGoogle Scholar
  5. Aguiar JS, Costa MCCD, Nascimento SC, Sena KXFR (2008) Antimicobial activity of Lippia alba (Mill.) N. E. Brown (Verbenaceae). Rev Brasil Farmacogn 18:436–440CrossRefGoogle Scholar
  6. Aharoni A, Giri AP, Deuerlein S, Griepink F, de Kogel W-J, Verstappen FWA, Verhoeven HA, Jongsma MA, Schwab W, Bouwmeester HJ (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15:2866–2884CrossRefPubMedPubMedCentralGoogle Scholar
  7. Amorati R, Foti MC, Valgimigli L (2013) Antioxidant activity of essential oils. J Agric Food Chem 61:10835–10847CrossRefPubMedGoogle Scholar
  8. Atarés L, Bonilla J, Chiralt A (2010) Characterization of sodium caseinate-based edible films incorporated with cinnamon or ginger essential oils. J Food Eng 100:678–687CrossRefGoogle Scholar
  9. Atkins S (2004) Verbenaceae. In: Kadereit JW (ed) The Families and genera of flowering plants, 7. Springer-Verlag, Berlin, pp 449–468Google Scholar
  10. Atkinson R, Arey J (2003) Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmospher Environ 37:197–219CrossRefGoogle Scholar
  11. Badr A, Angers P, Desjardins Y (2011) Metabolic profiling of photoautotrophic and photomixotrophic potato plantlets (Solanum tuberosum) provides new insights into acclimatization. Plant Cell Tiss Organ Cult 107:13–24CrossRefGoogle Scholar
  12. Badr A, Angers P, Desjardins Y (2015) Comprehensive analysis of in vitro to ex vitro transition of tissue cultured potato plantlets grown with or without sucrose using metabolic profiling technique. Plant Cell Tiss Organ Cult 122:491–508CrossRefGoogle Scholar
  13. Batista DS, Castro KM, Silva AR, Teixeira ML, Sales TA, Soares LI, Cardoso MG, Santos MO, Viccini LF, Otoni WC (2016) Light quality affects in vitro growth and essential oil profile in Lippia alba (Verbenaceae). In Vitro Cell Dev Biol Plant 52:276–282CrossRefGoogle Scholar
  14. Bencze S, Bamberger Z, Janda T, Balla K, Varga B, Bedő Z, Veisz O (2014) Physiological response of wheat varieties to elevated atmospheric CO2 and low water supply levels. Photosynthetica 52:71–82CrossRefGoogle Scholar
  15. Böhme K, Barros-Velázquez J, Calo-Mata P, Aubourg SP (2014) Antibacterial, antiviral and antifungal activity of essential oils: Mechanisms and applications. In: Villa TG, Veiga-Crespo P (eds) Antimicrobial compounds. Springer-Verlag, Berlin Heidelberg, pp 51–81CrossRefGoogle Scholar
  16. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253CrossRefPubMedGoogle Scholar
  17. Camurça-Vasconcelos ALF, Bevilaqua CML, Morais SM, Maciel MV, Costa CTC, Macedo ITF, Oliveira LMB, Braga RR, Silva RA, Vieira LS (2007) Anthelmintic activity of Croton zehntneri and Lippia sidoides essential oils. Vet Parasitol 148:288–294CrossRefPubMedGoogle Scholar
  18. Chemat F, Maryline A-V, Xavier F (2013) Microwave-assisted extraction of essential oils and aromas. Microwave-assisted extraction for bioactive compounds. Springer, New York, pp 53–68CrossRefGoogle Scholar
  19. Dáder B, Fereres A, Moreno A, Trębicki P (2015) Elevated CO2 impacts bell pepper growth with consequences to Myzus persicae life history, feeding behaviour and virus transmission ability. Sci Rep 6:19120–19120CrossRefGoogle Scholar
  20. David R, Carde JP (1964) Coloration différentielle des inclusions lipidique et terpéniques dês pseudophylles du Pin maritime au moyen du réactif Nadi. Comp Rendus Acad Sci 258:1338–1340.Google Scholar
  21. David JP, Meira M, David JM, Brandão HN, Branco A, Agra MF, Barbosa MRV, Queiroz LP, Giulietti AM (2007) Radical scavenging, antioxidant and cytotoxic activity of Brazilian Caatinga plants. Fitoterapia 78:215–218CrossRefPubMedGoogle Scholar
  22. Dewick PM (2002) The biosynthesis of C5–C25 terpenoid compounds. Nat Prod Rep 19:181–222CrossRefPubMedGoogle Scholar
  23. Dong L, Jongedijk E, Bouwmeester H, Van Der Krol A (2016) Monoterpene biosynthesis potential of plant subcellular compartments. New Phytol 209:679–690CrossRefPubMedGoogle Scholar
  24. Fontenelle ROS, Morais SM, Brito EHS, Kerntopf MR, Brilhante RSN, Cordeiro RA, Tomé AR, Queiroz MGR, Nascimento NRF, Sidrim JJC, Rocha MFG (2007) Chemical composition, toxicological aspects and antifungal activity of essential oil from Lippia sidoides. J Antimicrob Chemoth Adv Access 59:934–940CrossRefGoogle Scholar
  25. Friendly M, Fox J (2013) Visualizing generalized canonical discriminant and canonical correlation analysis. Documentation for R Package “candisc”, version 0.6–5 http://CRAN.R-project.org/package=candisc
  26. Gandhi SG, Mahajan V, Bedi YS (2015) Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta 241:303–317CrossRefPubMedGoogle Scholar
  27. Ghasemzadeh A, Jaafar HZE (2011) Effect of CO2 enrichment on synthesis of some primary and secondary metabolites in ginger (Zingiber officinale Roscoe). Int J Mol Sci 12:1101–1114CrossRefPubMedPubMedCentralGoogle Scholar
  28. Haworth M, Elliott-Kingston C, McElwain JC (2013) Co-ordination of physiological and morphological responses of stomata to elevated [CO2] in vascular plants. Oecologia 171:71–82CrossRefPubMedGoogle Scholar
  29. Hennebelle T, Sahpaz S, Joseph H, Bailleul F (2008) Ethnopharmacology of Lippia alba. J Ethnopharm 116:211–222CrossRefGoogle Scholar
  30. Hyldgaard M, Tina M, Rikke LM (2012) Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol 12:36–59Google Scholar
  31. Iarema L, Cruz ACF, Saldanha CW, Dias LLC, Vieira RF, Oliveira EJ, Otoni WC (2012) Photoautotrophic propagation of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Cell Tiss Organ Cult 110:227–238CrossRefGoogle Scholar
  32. Ibrahim MH, Jaafar HZ (2012) Impact of elevated carbon dioxide on primary, secondary metabolites and antioxidant responses of Eleais guineensis Jacq.(Oil Palm) seedlings. Molecules 17:5195–5211CrossRefPubMedGoogle Scholar
  33. IPCC (Intergovernmental Panel on Climate Change) (2007) Summary for Policymakers. In: Solomon SD, Qin M, Manning Z, Chen M, Marquis KB, Averyt MT, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, p 1–18CrossRefGoogle Scholar
  34. Jain MS, Saxena PK (2009) Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants. Humana Press, New YorkCrossRefGoogle Scholar
  35. Johansen DA (1940) Plant microtechnique. McGraw-Hill Book, New YorkGoogle Scholar
  36. Kang JH, KrishnaKumar S, Atulba SLS, Jeong BR, Hwang SJ (2013) Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system. Hortic Environ Biotechnol 54:501–509CrossRefGoogle Scholar
  37. Klaiber J, Najar-Rodriguez AJ, Piskorski R, Dorn S (2013) Plant acclimation to elevated CO2 affects important plant functional traits, and concomitantly reduces plant colonization rates by an herbivorous insect. Planta 237:29–42CrossRefPubMedGoogle Scholar
  38. Kontunen-Soppela S, Riikonen J, Ruhanen H, Brosché M, Somervuo P, Peltonen P, Kangasjärvi J, Auvinen P, Paulin L, Keinänen M, Oksanen E, Vapaavuori E (2010) Differential gene expression in senescing leaves of two silver birch genotypes in response to elevated CO2 and tropospheric ozone. Plant Cell Environ 33:1016–1028CrossRefPubMedGoogle Scholar
  39. Kozai T (2010) Photoautotrophic micropropagation—environmental control for promoting photosynthesis. Prop Ornam Plants 10:188–204Google Scholar
  40. Lavola A, Julkunen-Tiitto R (1994) The effect of elevated carbon dioxide and fertilization on primary and secondary metabolites in birch, Betula pendula (Roth). Oecologia 99:315–321CrossRefGoogle Scholar
  41. Levine LH, Kasahara H, Kopka J, Erban A, Fehrl I, Kaplan F, Zhao W, Littell RC, Guy C, Wheeler R, Sager J, Mills A, Levine HG (2008) Physiologic and metabolic responses of wheat seedlings to elevated and super-elevated carbon dioxide. Adv Space Res 42:1917–1928CrossRefGoogle Scholar
  42. Li P, Ainsworth EA, Leakey AD, Ulanov A, Lozovaya V, Ort DR, Bohnert HJ (2008) Arabidopsis transcript and metabolite profiles: ecotype-specific responses to open-air elevated [CO2]. Plant Cell Environ 31:1673–1687CrossRefPubMedGoogle Scholar
  43. Llana-Ruiz-Cabello M, Pichardo S, Maisanaba S, Puerto M, Prieto AI, Gutiérrez-Praena D, Jos A, Cameán AM (2015) In vitro toxicological evaluation of essential oils and their main compounds used in active food packaging: a review. Food Chem Toxicol 81:9–27CrossRefPubMedGoogle Scholar
  44. Mamatha H, Rao NS, Laxman RH, Shivashankara KS, Bhatt RM, Pavithra KC (2014) Impact of elevated CO2 on growth, physiology, yield, and quality of tomato (Lycopersicon esculentum Mill) cv. ArkaAshish. Photosynthetica 52:519–528CrossRefGoogle Scholar
  45. Martin DM, Chiang A, Lund ST, Bohlmann J (2012) Biosynthesis of wine aroma: transcript profiles of hydroxymethylbutenyldiphosphatereductase, geranyldiphosphate synthase, and linalool/nerolidol synthase parallel monoterpenol glycoside accumulation in Gewürztraminer grapes. Planta 236:919–929CrossRefPubMedGoogle Scholar
  46. May P, Liao W, Wu Y, Shuai B, McCombie WR, Zhang MQ, Liu QA (2013) The effects of carbon dioxide and temperature on microRNA expression in Arabidopsis development. Nat Commun 4:1–11CrossRefGoogle Scholar
  47. McAdam SAM, Brodribb TJ (2012) Stomatal innovation and the rise of seed plants. Ecol Lett 15:1–8CrossRefPubMedGoogle Scholar
  48. Misra BB, Chen S (2015) Advances in understanding CO2 responsive plant metabolomes in the era of climate change. Metabolomics 11:1478–1491CrossRefGoogle Scholar
  49. Mjos SA, Meier S, Boitsov S (2006) Alkylphenol retention indices. J Chromatogr 1123:98–105CrossRefGoogle Scholar
  50. Mohamed MAH, Ibrahim TA (2012) Enhanced in vitro production of Ruta graveolens L. coumarins and rutin by mannitol and ventilation. Plant Cell Tiss Organ Cult 111:335–343CrossRefGoogle Scholar
  51. Mosaleeyanon K, Chan-Um S, Kirmanee C (2004) Enhanced growth and photosynthesis of rain tree (Samanea saman Merr.) plantlets in vitro under a CO2-enriched condition with decreased sucrose concentrations in the medium. Sci Hortic 103:51–63CrossRefGoogle Scholar
  52. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  53. Ncube B, Baskaran P, Van Staden J (2015) Transition from in vitro to an ex vitro environment: is the metabolism altered? In Vitro Cell Dev Biol Plant 51:166–173CrossRefGoogle Scholar
  54. Oehme V, Högy P, Zebitz CPW, Fangmeier A (2013) Effects of elevated atmospheric CO2 concentrations on phloem sap composition of spring crops and aphid performance. J Plant Interact 8:74–84CrossRefGoogle Scholar
  55. Otoni CG, Pontes SFO, Medeiros EAA, Soares NFF (2014) Edible films from methylcellulose and nanoemulsions of clove bud (Syzygium aromaticum) and Oregano (Origanum vulgare) essential oils as shelf life extenders for sliced bread. J Agric Food Chem 62:5214–5219CrossRefPubMedGoogle Scholar
  56. Otoni CG, McHugh TH, Avena-Bustillos RJ, Olsen CW, Bilbao-Sainz C (2016) Mechanical and water barrier properties of isolated soy protein composite edible films as affected by carvacrol and cinnamaldehyde micro and nanoemulsions. Food Hydrocolloid 57:72–79CrossRefGoogle Scholar
  57. Pacheco FV, Avelar RP, Alvarenga ICA, Bertolucci SKV, Alvarenga AA, Pinto JEBP (2016) Essential oil of monkey-pepper (Piper aduncum L.) cultivated under different light environments. Ind Crop Prod 85:251–257CrossRefGoogle Scholar
  58. Pascual ME, Slowing K, Carretero E, Sánches Mata D, Villar A (2001) Lippia: traditional uses, chemistry and pharmacology: a review. J Ethnopharm 76:201–214CrossRefGoogle Scholar
  59. Peng Y, Li Y (2014) Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films. Food Hydrocolloid 36:287–293CrossRefGoogle Scholar
  60. Pereira AA, Cardoso MG, Abreu LR, Morais AR, Guimarães LGL, Salgado APSP (2008) Caracterização química e efeito inibitório de óleos essenciais sobre o crescimento de Staphylococcus aureus e Escherichia coli. Ciência Agrotécnica 32:887–893CrossRefGoogle Scholar
  61. Pérez-Jiménez M, López-Pérez AJ, Otálora-Alcón G, Marín-Nicolás D, Piñero MC, del Amor FM (2015) A regime of high CO2 concentration improves the acclimatization process and increases plant quality and survival. Plant Cell Tiss Organ Cult 121:547–557CrossRefGoogle Scholar
  62. Proestos C, Lytoudi K, Mavromelanidou OK, Zoumpoulakis P, Sinanoglou VJ (2013) Antioxidant capacity of selected plant extracts and their essential oils. Antioxidants 2:11–22CrossRefPubMedPubMedCentralGoogle Scholar
  63. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  64. Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswki M, Cusidó RM, Palazon J (2016) Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories: review. Molecules 21:182. doi:10.3390/molecules21020182 CrossRefPubMedGoogle Scholar
  65. Reis AC, Sousa SM, Vale AA, Pierre PMO, Franco AL, Campos JMS, Vieira RF, Viccini LF (2014) Lippia alba (Mill.) N. E. Br. (Verbenaceae): a new tropical autopolyploid complex? Am J Bot 101:1002–1012CrossRefPubMedGoogle Scholar
  66. Richet N, Afif D, Tozo K, Pollet B, Maillard P, Huber F, Priault P, Banvoy J, Gross P, Dizengremel P, Lapierre C (2012) Elevated CO2 and/or ozone modify lignification in the wood of poplars (Populus tremula x alba). J Exp Bot 63:4291–4301CrossRefPubMedPubMedCentralGoogle Scholar
  67. Rodziewicz P, Swarcewicz B, Chmielewska K, Wojakowska A, Stobiecki M (2014) Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiol Plant 36:1–19CrossRefGoogle Scholar
  68. Saldanha CW, Otoni CG, Notini MM, Kuki KN, Cruz ACF, Rubio Neto A, Dias LLC, Otoni WC (2013) A CO2-enriched atmosphere improves in vitro growth of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. In Vitro Cell Dev Biol Plant 49:433–444CrossRefGoogle Scholar
  69. Saldanha CW, Otoni CG, Rocha DI, Cavatte PC, Detmann KDSC, Tanaka FAO, Dias LLC, DaMatta FM, Otoni WC (2014) CO2-enriched atmosphere and supporting material impact the growth, morphophysiology and ultrastructure of in vitro Brazilian-ginseng [Pfaffia glomerata (Spreng.) Pedersen] plantlets. Plant Cell Tiss Organ Cult 118:87–99CrossRefGoogle Scholar
  70. Schilmiller AL, Pichersky E, Last RL (2012) Taming the hydra of specialized metabolism: how systems biology and comparative approaches are revolutionizing plant biochemistry. Curr Opin Plant Biol 15:338–344CrossRefPubMedGoogle Scholar
  71. Scott RJ, Knott M (1974) A cluster analysis method for grouping mans in the analysis of variance. Biometrics 30:507–512CrossRefGoogle Scholar
  72. Singulani JL, Silva PS, Raposo NRB, Siqueira EP, Zani CL, Alves TMA, Viccini LF (2012) Chemical composition and antioxidant activity of Lippia species. J Med Plants Res 6:4416–4422Google Scholar
  73. Springer CJ, Orozco RA, Kelly JK, Ward JK (2008) Elevated CO2 influences the expression of floral-initiation genes in Arabidopsis thaliana. New Phytol 178:243–255CrossRefGoogle Scholar
  74. Supaibulwattana K, Kuntawunginn W, Cha-um S, Kirdmanee C (2012) Artemisinin accumulation and enhanced net photosynthetic rate in Qinghao (Artemisia annua L.) hardened in vitro in enriched-CO2 photoautotrophic conditions. Plant Omics 4:75–81Google Scholar
  75. Szczepanski S, Lipski A (2014) Essential oils show specific inhibiting effects on bacterial biofilm formation. Food Control 36:224–229CrossRefGoogle Scholar
  76. Torres E, Lopez N (2007) Phenotypic plasticity of Lippia alba and Lippia origanoides (Verbenaceae) in response to availability of light. Acta Biol Colombiana 12:91–102Google Scholar
  77. Turek C, Stintzing FC (2013) Stability of essential oils: a review. Comp Rev Food Sci Food Safety 12:40–53CrossRefGoogle Scholar
  78. Valdés A, Mellinas AC, Ramos M, Burgos N, Jiménez A, Garrigós MS (2015) Use of herbs, spices and their bioactive compounds in active food packaging. Royal Soc Chem Adv 5:40324–40335Google Scholar
  79. Viccini LF, Silveira RS, do Vale AA, de Campos JMS, Reis AC, Santos MO, Campos VR, Carpanez AG, Grazul RM (2014) Citral and linalool content has been correlated to DNA content in Lippia alba (Mill.) NE Brown (Verbenaceae). Ind Crop Prod 59:14–19CrossRefGoogle Scholar
  80. Walker AP, Zaehle S, Medlyn BE, De Kauwe MG, Asao S, Hickler T, Parton W, Ricciuto DM, Wang Y-P, Wårlind D, Norby RJ (2015) Predicting long-term carbon sequestration in response to CO2 enrichment: How and why do current ecosystem models differ? Global Biogeochem Cycles 29:476–495CrossRefGoogle Scholar
  81. Wang M, Liu H, Dong C, Fu Y, Liu H (2016) Elevated CO2 enhance photosynthetic efficiency, ions uptake and antioxidant activity of Gynura bicolor DC. Grown porous-tube nutrient delivery system under simulated microgravity. Plant Biol 18:391–399CrossRefPubMedGoogle Scholar
  82. Werker E (2000) Trichome diversity and development. Adv Bot Res 31:1–35CrossRefGoogle Scholar
  83. Woodward FI (1987) Stomatal numbers are sensitive to increases in CO2 from preindustrial levels. Nature 327:617–618CrossRefGoogle Scholar
  84. Xiao Y, Niu G, Kozai T (2011) Development and application of photoautotrophic micropropagation plant system. Plant Cell Tiss Organ Cult 105:149–158CrossRefGoogle Scholar
  85. Yang W, Cho HS, Kim M, Seong KY, Park TS, Seo MC, Kang HW (2013) Re-examination of the standard cultivation practices of rice in response to climate change in Korea. J Crop Sci Biotechnol 16:85–92CrossRefGoogle Scholar
  86. Yeater KM, Duke SE, Riedell WE (2015) Multivariate analysis: greater insights into complex systems. Agron J 107:799–810CrossRefGoogle Scholar
  87. Yuan JS, Reed A, Chen F, Stewart Jr CN (2006) Statistical analysis of real-time PCR data. BMC Bioinform 7:85CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Diego Silva Batista
    • 1
  • Kamila Motta de Castro
    • 1
  • Andréa Dias Koehler
    • 1
  • Brenda Neves Porto
    • 2
  • Anderson Rodrigo da Silva
    • 3
  • Vinicius Carius de Souza
    • 4
  • Maria Luisa Teixeira
    • 5
  • Maria das Graças Cardoso
    • 5
  • Marcelo de Oliveira Santos
    • 4
  • Lyderson Facio Viccini
    • 4
  • Wagner Campos Otoni
    • 1
  1. 1.Plant Biology Department, Plant Tissue Culture Laboratory/BIOAGROUniversity Campus, P.H. Rolfs Avenue, Federal University of ViçosaViçosaBrazil
  2. 2.Biotecnologia Vegetal, Universidade Federal de LavrasLavrasBrazil
  3. 3.Instituto Federal GoianoCampus UrutaíUrutaíBrazil
  4. 4.Laboratório de Genética e Biotecnologia, Departamento de BiologiaUniversidade Federal de Juiz de ForaJuiz de ForaBrazil
  5. 5.Laboratório de Óleos Essenciais, Departamento de QuímicaUniversidade Federal de LavrasLavrasBrazil

Personalised recommendations