Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Profiling of microRNAs in wild type and early flowering transgenic Chrysanthemum morifolium by deep sequencing

  • 453 Accesses

  • 3 Citations


Here, we performed comparative miRNA profiling in wild type and early flowering transgenic Chrysanthemum morifolium with constitutive expression of APETALA1 (AP1)-like gene, HAM92 (Helianthus annuus). Six sRNA libraries constructed from leaves and shoot apexes after the short day photoperiod initiation, as well as from opened inflorescence after anthesis were sequenced and analyzed. A total of 324 members (163 families) of putative conserved miRNAs and 30 candidate novel miRNAs specific for C. morifolium (cmo-miRNAs) were identified. Bioinformatic analysis revealed 427 and 138 potential mRNA targets for conserved and novel cmo-miRNAs, respectively. These genes were described in Gene Ontology terms and found to be implicated in a broad range of signaling pathways. Plant- and tissue-specific expression of 9 highly conserved cmo-miRNAs was compared between wild type and transgenic chrysanthemum lines with ectopic expression of AP1-like genes HAM92 and CDM111 (C. morifolium), using RT-qPCR and cmo-miR162a as a reference miRNA. The results of our study provide a framework for further investigation of miRNA evolution and functions in higher plants, as well as their roles in flowering control.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9



Adjusted MFE








Cycle threshold


Dehydration responsive element binding protein










Gene ontology




Minimal folding free energy


MFE index


Next-generation sequencing


Reverse transcription quantitative polymerase chain reaction












Wild type


Short day


  1. Abdel-Ghany SE, Pilon MJ (2008) MicroRNA-mediated systemic downregulation of copper protein expression in response to low copper availability in Arabidopsis. Biol Chem 283(23):15932–15945. doi:10.1074/jbc.M801406200

  2. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250. doi:10.1158/0008-5472.CAN-04-0496

  3. Axtell MJ, Snyder JA, Bartel DP (2007) Common functions for diverse small RNAs of land plants. Plant Cell 19(6):1750–1769. doi:10.1105/tpc.107.051706

  4. Barozai MY, Baloch IA, Din M (2012) Identification of MicroRNAs and their targets in Helianthus. Mol Biol Rep 39(3):2523–2532. doi:10.1007/s11033-011-1004-y

  5. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. doi:10.1016/S0092-8674(04)00045-5

  6. Bazin J, Khan GA, Combier JP, Bustos-Sanmamed P, Debernardi JM, Rodriguez R, Sorin C, Palatnik J, Hartmann C, Crespi M, Lelandais-Brière C (2013) miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula. Plant J 74(6):920–934. doi:10.1111/tpj.12178

  7. Benes V, Castoldi M (2010) Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 50(4):244–249. doi:10.1016/j.ymeth.2010.01.026

  8. Budak H, Kantar M, Bulut R, Akpinar BA (2015) Stress responsive miRNAs and isomiRs in cereals. Plant Sci 235:1–13. doi:10.1016/j.plantsci.2015.02.008

  9. Burko Y, Shleizer-Burko S, Yanai O, Shwartz I, Zelnik ID, Jacob-Hirsch J, Kela I, Eshed-Williams L, Ori N (2013) A role for APETALA1/fruitfull transcription factors in tomato leaf development. Plant Cell 25(6):2070–2083. doi:10.1105/tpc.113.113035

  10. Cao S, Zhu QH, Shen W, Jiao X, Zhao X, Wang MB, Liu L, Singh SP, Liu Q (2013) Comparative profiling of miRNA expression in developing seeds of high linoleic and high oleic safflower (Carthamus tinctorius L.) plants. Front. Plant Sci 4:489. doi:10.3389/fpls.2013.00489

  11. Chávez Montes RA, de Fátima Rosas-Cárdenas F, De Paoli E, Accerbi M, Rymarquis LA, Mahalingam G, Marsch-Martínez N, Meyers BC, Green PJ, de Folter S (2014) Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nat Commun 5:3722. doi:10.1038/ncomms4722

  12. Chen YF, Etheridge N, Schaller GE (2005) Ethylene signal transduction. Ann Bot (Lond) 95:901–915. doi:10.1093/aob/mci100

  13. Chen X, Yao Q, Gao X, Jiang C, Harberd NP, Fu X (2016) Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. Curr Biol 26(5):640–646. doi:10.1016/j.cub.2015.12.066

  14. De Paola D, Cattonaro F, Pignone D, Sonnante G (2012) The miRNAome of globe artichoke: conserved and novel micro RNAs and target analysis. BMC Genomics 13:41. doi:10.1186/1471-2164-13-41

  15. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2(2):e219. doi:10.1371/journal.pone.0000219

  16. Fan R, Li Y, Li C, Zhang Y (2015) Differential microRNA analysis of glandular trichomes and young leaves in xanthium strumarium L. reveals their putative roles in regulating terpenoid biosynthesis. PLoS One 10(9):e0139002. doi:10.1371/journal.pone.0139002

  17. Feng XM, Qiao Y, Mao K, Hao YJ (2010) Ectopic overexpression of AtmiR398b gene in tobacco influences seed germination and seedling growth. Plant Cell Tiss Organ Cult 102:53–59. doi:10.1007/s11240-010-9704-x

  18. Feng H, Huang X, Zhang Q, Wei G, Wang X, Kang Z (2012) Selection of suitable inner reference genes for relative quantification expression of microRNA in wheat. Plant Physiol Biochem 51:116–122. doi:10.1016/j.plaphy.2011.10.010

  19. Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40(1):37–52. doi:10.1093/nar/gkr688

  20. Gao Z, Shi T, Luo X, Zhang Z, Zhuang Gao Z, Shi T, Luo X, Zhang Z, Zhuang W, Wang L (2012) High-throughput sequencing of small RNAs and analysis of differentially expressed microRNAs associated with pistil development in Japanese apricot. BMC Genomics 13:371. doi:10.1186/1471-2164-13-371

  21. Gao C, Ju Z, Cao D, Zhai B, Qin G, Zhu H, Fu D, Luo Y, Zhu B (2015a) MicroRNA profiling analysis throughout tomato fruit development and ripening reveals potential regulatory role of RIN on microRNAs accumulation. Plant Biotechnol J 13(3):370–382. doi:10.1111/pbi.12297

  22. Gao C, Li P, Song A, Wang H, Wang Y, Ren L, Qi X, Chen F, Jiang J, Chen S (2015b) Isolation and characterization of six AP2/ERF transcription factor genes in Chrysanthemum nankingense. Int J Mol Sci 16:2052–2065. doi:10.3390/ijms16012052

  23. Garcia D (2008) A miRacle in plant development: role of microRNAs in cell differentiation and patterning. Semin Cell Dev Biol 19:586–595. doi:10.1016/j.semcdb.2008.07.013

  24. Goloveshkina EN, Shchennikova AV, Kamionskaya AM, Skryabin KG, Shulga OA (2012) Influence of ectopic expression of Asteraceae MADS box genes on plant ontogeny in tobacco. Plant Cell Tissue Organ Cult 109:61–71. doi:10.1007/s11240-011-0074-9

  25. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A (2005) Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 33:D121–D124. doi:10.1093/nar/gki081

  26. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158. doi:10.1093/nar/gkm952

  27. Guleria P, Yadav SK (2011) Identification of miR414 and expression analysis of conserved miRNAs from Stevia rebaudiana. Genomics Proteomics Bioinform 9(6):211–217. doi:10.1016/S1672-0229(11)60024-7

  28. Guo L, Chen F (2014) A challenge for miRNA: multiple isomiRs and miRNAomics. Gene 544:1–7. doi:10.1016/j.gene.2014.04.039

  29. Han Y, Zhu B, Luan F, Zhu H, Shao Y, Chen A, Lu C, Luo Y (2010) Conserved miRNAs and their targets identified in lettuce (Lactuca) by EST analysis. Gene 463(1–2):1–7. doi:10.1016/j.gene.2010.04.012

  30. Hong Y, Jackson S (2015) Floral induction and flower formation–the role and potential applications of miRNAs. Plant Biotechnol J 13(3):282–292. doi:10.1111/pbi.12340

  31. Huang H, Chen S, Li H, Jiang J (2015) Next-generation transcriptome analysis in transgenic birch overexpressing and suppressing APETALA1 sheds lights in reproduction development and diterpenoid biosynthesis. Plant Cell Rep 34(9):1663–1680. doi:10.1007/s00299-015-1817-6

  32. Jones-Rhoades MW, Bartel DP, Bartel B (2006) microRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53. doi:10.1146/annurev.arplant.57.032905.105218

  33. Jovanović Ž, Stanisavljević N, Mikić A, Radović S, Maksimović V (2014) Water deficit down-regulates miR398 and miR408 in pea (Pisum sativum L.). Plant Physiol Biochem 83:26–31. doi:10.1016/j.plaphy.2014.07.008

  34. Kalve S, De Vos D, Beemster GT (2014) Leaf development: a cellular perspective. Front Plant Sci 5:362. doi:10.3389/fpls.2014.00362

  35. Kaufmann K, Wellmer F, Muiño JM, Ferrier T, Wuest SE, Kumar V, Serrano-Mislata A, Madueño F, Krajewski P, Meyerowitz EM, Angenent GC, Riechmann JL (2010) Orchestration of floral initiation by APETALA1. Science 328(5974):85–89. doi:10.1126/science.1185244

  36. Khan MRG, Ai XY, Zhang JZ (2014) Genetic regulation of flowering time in annual and perennial plants. WIREs RNA 5:347–359. doi:10.1002/wrna.1215

  37. Khan Y, Yadav A, Bonthala VS, Muthamilarasan M, Yadav CB, Prasad M (2014) Comprehensive genome-wide identification and expression profiling of foxtail millet [Setaria italica (L.)] miRNAs in response to abiotic stress and development of miRNA database. Plant Cell Tissue Organ Cult 118:279–292. doi:10.1007/s11240-014-0480-x

  38. Kim HJ, Baek KH, Lee BW, Choi D, Hoor CG (2011a) In silico identification and characterization of microRNAs and their putative target genes in Solanaceae plants. Genome 54(2):91–98. doi:10.1139/G10-104

  39. Kim W, Ahn HJ, Chiou TJ, Ahn JH (2011b) The role of the miR399-PHO2 module in the regulation of flowering time in response to different ambient temperatures in Arabidopsis thaliana. Mol Cells 32:83–88. doi:10.1007/s10059-011-1043-1

  40. Kim D, Cho YH, Ryu H, Kim Y, Kim TH, Hwang I (2013) BLH1 and KNAT3 modulate ABA responses during germination and early seedling development in Arabidopsis. Plant J 75(5):755–766. doi:10.1111/tpj.12236

  41. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73. doi:10.1093/nar/gkt1181

  42. Kudo K, Oi T, Uno Y (2014) Functional characterization and expression profiling of a DREB2- type gene from lettuce (Lactuca sativa L.). Plant Cell Tissue Organ Cult 116:97–109. doi:10.1007/s11240-013-0386-z

  43. Li H, Dong Y, Sun Y, Zhu E, Yang J, Liu X, Xue P, Xiao Y, Yang S, Wu J, Li X (2011) Investigation of the microRNAs in safflower seed, leaf, and petal by high-throughput sequencing. Planta 233(3):611–619. doi:10.1007/s00425-010-1327-2

  44. Mandhan V, Kaur J, Singh K (2012) smRNAome profiling to identify conserved and novel microRNAs in Stevia rebaudiana Bertoni. BMC Plant Biol 12:197. doi:10.1186/1471-2229-12-197

  45. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10. doi:10.14806/ej.17.1.200

  46. Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martiessen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20(12):3186–3190. doi:10.1105/tpc.108.064311

  47. Monavar Feshani A, Mohammadi S, Frazier TP, Abbasi A, Abedini R, Karimi Farsad L, Ehya F, Salekdeh GH, Mardi M (2012) Identification and validation of Asteraceae miRNAs by the expressed sequence tag analysis. Gene 493(2):253–259. doi:10.1016/j.gene.2011.11.024

  48. Morea EG, da Silva EM, e Silva GF, Valente GT, Barrera Rojas CH, Vincentz M, Nogueira FT (2016) Functional and evolutionary analyses of the miR156 and miR529 families in land plants. BMC Plant Biol 16:40. doi:10.1186/s12870-016-0716-5

  49. Morin RD, Aksay G, Dolgosheina E, Ebhardt HA, Magrini V, Mardis ER, Sahinalp SC, Unrau PJ (2008) Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa. Genome Res 18(4):571–584. doi:10.1101/gr.6897308

  50. Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132(18):4107–4118. doi:10.1242/dev.01955

  51. Nie S, Xu L, Wang Y, Huang D, Muleke EM, Sun X, Wang R, Xie Y, Gong Y, Liu L (2015) Identification of bolting-related microRNAs and their targets reveals complex miRNA-mediated flowering-time regulatory networks in radish (Raphanus sativus L.). Sci Rep 5:14034. doi:10.1038/srep14034

  52. Niu S, Fan G, Zhao Z, Deng M, Dong Y (2014) High-throughput sequencing and degradome analysis reveal microRNA differential expression profiles and their targets in Paulownia fortunei. Plant Cell Tissue Organ Cult 119:457–468. doi:10.1007/s11240-014-0546-9

  53. Oh S, Zhang H, Ludwig P, van Nocker S (2004) A mechanism related to the yeast transcriptional regulator Paf1c is required for expression of the Arabidopsis FLC/MAF MADS box gene family. Plant Cell 16(11):2940–2953. doi:10.1105/tpc.104.026062

  54. Oliveros J (2007) An interactive tool for comparing lists with Venn diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html

  55. Pagnussat GC, Yu HJ, Sundaresan V (2007) Cell-fate switch of synergid to egg cell in Arabidopsis eostre mutant embryo sacs arises from misexpression of the BEL1-like homeodomain gene BLH1. Plant Cell 19(11):3578–3592. doi:10.1105/tpc.107.054890

  56. Pani A, Mahapatra RK, Behera N, Naik PK (2011) Computational identification of sweet wormwood (Artemisia annua) microRNA and their mRNA targets. Genomics Proteomics Bioinform 9(6):200–210. doi:10.1016/S1672-0229(11)60023-5

  57. Peláez P, Trejo MS, Iñiguez LP, Estrada-Navarrete G, Covarrubias AA, Reyes JL, Sanchez F (2012) Identification and characterization of microRNAs in Phaseolus vulgaris by high-throughput sequencing. BMC Genomics 13:83. doi:10.1186/1471-2164-13-83

  58. Pérez-Quintero AL, Sablok G, Tatarinova TV, Conesa A, Kuo J, López C (2012) Mining of miRNAs and potential targets from gene oriented clusters of transcripts sequences of the anti-malarial plant, Artemisia annua. Biotechnol Lett 34(4):737–745. doi:10.1007/s10529-011-0808-0

  59. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9):e36

  60. Pfaffl MW, Tichopád A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol Lett 26(6):509–515. http://link.springer.com/article/10.1023/B%3ABILE.0000019559.84305.47

  61. Rajwanshi R, Chakraborty S, Jayanandi K, Deb B, Lightfoot DA (2014) Orthologous plant microRNAs: microregulators with great potential for improving stress tolerance in plants. Theor Appl Genet 127(12):2525–2543. doi:10.1007/s00122-014-2391-y

  62. Reyes JC, Muro-Pastor MI, Florencio FJ (2004) The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol 134(4):1718–1732. doi:10.1104/pp.103.037788

  63. Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H (2006) Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression’s CT difference” formula. J Mol Med (Berl) 84(11):901–910. doi:10.1007/s00109-006-0097-6

  64. Shchennikova AV, Shulga OA, Immink R, Skryabin KG, Angenent GC (2004) Identification and characterization of four chrysanthemum MADS-box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies. Plant Physiol 134(4):1632–1641. doi:10.1104/pp.103.036665

  65. Shchennikova AV, Beletsky AV, Shulga OA, Mazur AM, Prokhortchouk EB, Kochieva EZ, Ravin NV, Skryabin KG (2016) Deep-sequence profiling of miRNAs and their target prediction in Monotropa hypopitys. Plant Mol Biol. doi:10.1007/s11103-016-0478-3

  66. Shulga OA, Mitiouchkina TYu, Shchennikova AV, Skryabin KG, Dolgov SV (2011) Overexpression of AP1-like genes from Asteraceae induces early-flowering in transgenic Chrysanthemum plants. In Vitro Cell Dev Biol 47:553–560. doi:10.1007/s11627-011-9393-0

  67. Sieber P, Wellmer F, Gheyselinck J, Riechmann JL, Meyerowitz EM (2007) Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. Development 134(6):1051–1060. doi:10.1242/dev.02817

  68. Song A, Wang L, Chen S, Jiang J, Guan Z, Li P, Chen F (2015) Identification of nitrogen starvation-responsive microRNAs in Chrysanthemum nankingense. Plant Physiol Biochem 91:41–48. doi:10.1016/j.plaphy.2015.04.003

  69. Stocks MB, Moxon S, Mapleson D, Woolfenden HC, Mohorianu I, Folkes L, Schwach F, Dalmay T, Moulton V (2012) The UEA sRNA workbench: a suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets. Bioinformatics 28(15):2059–2061. doi:10.1093/bioinformatics/bts311

  70. Sumitomo K, Narumi K, Satoh S, Hisamatsu T (2008) Involvement of the ethylene response pathway in dormancy induction in chrysanthemum. J Exp Bot 59(15):4075–4082. doi:10.1093/jxb/ern247

  71. Taylor RS, Tarver JE, Hiscock SJ, Donoghue PC (2014) Evolutionary history of plant microRNAs. Trends Plant Sci 19:175–182. doi:10.1016/j.tplants.2013.11.008

  72. Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136(4):669–687. doi:10.1016/j.cell.2009.01.046

  73. Vroemen CW, Mordhorst AP, Albrecht C, Kwaaitaal MACJ, de Vries SC (2003) The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell 15:1563–1577. doi:10.1105/tpc.012203

  74. Wang JW (2014a) Regulation of flowering time by the miR156-mediated age pathway. J Exp Bot 65(17):4723–4730. doi:10.1093/jxb/eru246

  75. Wang H, Jiang J, Chen S, Qi X, Peng H, Li P, Song A, Guan Z, Fang W, Liao Y, Chen F (2013) Next-generation sequencing of the Chrysanthemum nankingense (Asteraceae) transcriptome permits large-scale unigene assembly and SSR marker discovery. PLoS One 8(4):e62293. doi:10.1371/journal.pone.0062293

  76. Wang Y, Huang H, Ma Y, Fu J, Wang L, Dai S (2014b) Construction and de novo characterization of a transcriptome of Chrysanthemum lavandulifolium: analysis of gene expression patterns in floral bud emergence. Plant Cell Tissue Organ Cult 116:297–309. doi:10.1007/s11240-013-0404-1

  77. Wang H, Chen S, Jiang J, Zhang F, Chen F (2015) Reference gene selection for cross-species and cross-ploidy level comparisons in Chrysanthemum spp. Sci Rep 5:8094. doi:10.1038/srep08094

  78. Wollmann H, Mica E, Todesco M, Long JA, Weigel D (2010) On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development. Development 137:3633–3642. doi:10.1242/dev.036673

  79. Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133: 4211–4218. doi:10.1242/dev.02602

  80. Wu G, Park Y, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138(4):750–759. doi:10.1016/j.cell.2009.06.031

  81. Xia X, Shao Y, Jiang J, Du X, Sheng L, Chen F, Fang W, Guan Z, Chen S (2015) MicroRNA Expression Profile during Aphid Feeding in Chrysanthemum (Chrysanthemum morifolium). PLoS One 10(12):e0143720. doi:10.1371/journal.pone.0143720

  82. Yamada T, Sasaki Y, Hashimoto K, Nakajima K, Gasser CS (2016) CORONA, PHABULOSA and PHAVOLUTA collaborate with BELL1 to confine WUSCHEL expression to the nucellus in Arabidopsis ovules. Development 143(3):422–426. doi:10.1242/dev.129833

  83. Yamaguchi A, Abe M (2012) Regulation of reproductive development by non-coding RNA in Arabidopsis: to flower or not to flower. J Plant Res 125:693–704. doi:10.1007/s10265-012-0513-7

  84. Yang CY, Huang YH, Lin CP, Lin YY, Hsu HC, Wang CN, Liu LY, Shen BN, Lin SS (2015) MicroRNA396-targeted SHORT VEGETATIVE PHASE is required to repress flowering and is related to the development of abnormal flower symptoms by the phyllody symptoms1 effector. Plant Physiol 168(4):1702–1716. doi:10.1104/pp.15.00307

  85. Yin Z, Li C, Han X, Shen F (2008) Identification of conserved microRNAs and their target genes in tomato (Lycopersicon esculentum). Gene 414(1–2):60–66. doi:10.1016/j.gene.2008.02.007

  86. Yu H, Ito T, Zhao Y, Peng J, Kumar P, Meyerowitz EM (2004) Floral homeotic genes are targets of gibberellin signaling in flower development. PNAS 101(20):7827–7832. doi:10.1073/pnas.0402377101

  87. Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson TA (2006a) Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci 63(2):246–254. doi:10.1007/s00018-005-5467-7

  88. Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006b) Conservation and divergence of plant microRNA genes. Plant J 46:243–259. doi:10.1111/j.1365-313X.2006.02697.x

  89. Zhang H, Zhao X, Li J, Cai H, Deng XW, Li L (2014) MicroRNA408 is critical for the HY5-SPL7 gene network that mediates the coordinated response to light and copper. Plant Cell 26(12):4933–4953. doi:10.1105/tpc.114.127340

  90. Zhang F, Dong W, Huang L, Song A, Wang H, Fang W, Chen F, Teng N (2015a) Identification of MicroRNAs and their targets associated with embryo abortion during chrysanthemum cross breeding via high-throughput sequencing. PLoS One 10(4):e0124371. doi:10.1371/journal.pone.0124371

  91. Zhang SD, Ling LZ, Zhang QF, Xu JD, Cheng L (2015b) Evolutionary Comparison of two combinatorial regulators of SBP-Box genes, MiR156 and MiR529, in plants. PLOS One doi:10.1371/journal.pone.0124621

  92. Zhao B, Ge L, Liang R, Li W, Ruan K, Lin H, Jin Y (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NFYA transcription factor. BMC Mol Biol 10:29. doi:10.1186/1471-2199-10-29

  93. Zhao Q, Sun C, Liu DD, Hao YJ, You CX (2015) Ectopic expression of the apple Md-miR172e gene alters flowering time and floral organ identity in Arabidopsis. Plant Cell Tissue Organ Cult 123:535–546. doi:10.1007/s11240-015-0857-5

  94. Zhong B, Sun L, Penny D (2015) The Origin of Land Plants: A Phylogenomic Perspective. Evolutionary. Bioinformatics 11:137–141. doi:10.4137/EBO.S29089

  95. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415. doi:10.1093/nar/gkg595

Download references


This work was supported by the grant from the Russian Foundation for Basic Research 12-07-31039-MOL_A_2012, President Grant for Government Support of Young Russian Scientist–2012 (SP-2056.2012.5), the Program of the Presidium of the Russian Academy of Sciences “Molecular and Cell Biology” (01201353319), and was performed using the experimental climate control facility.

Author contributions

EBP and KGS conceived and designed the experiments. AVN and ESP performed the experiments. Analyzed the data: OAS, AVS, AVN, FSS, AAS, SMR, ASS, and NMG analyzed the data. EBP and AAS contributed reagents, materials, and analytic tools. OAS and AVS provided plant material. OAS, AVS, and AVN wrote the paper. All authors read and approved the final manuscript.

Author information

Correspondence to O. A. Shulga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 ESM_1 Supplementary Tables S1–S14 ‘Summary of high-throughput sequencing of C. morifolium small RNA library. S1 – sRNA library WT_leaf (S1), sequencing dataset, 100% homology (0 mismatches, mm); S2 – sRNA library WT_ap (S5), sequencing dataset, 100% homology; S3 – sRNA library WT_infl (S9), sequencing dataset, 100% homology; S4 – sRNA library 92-31_leaf (S2), sequencing dataset, 100% homology; S5 – sRNA library 92-31_ap (S6), sequencing dataset, 100% homology; S6 – sRNA library 92-31_infl (S10), sequencing dataset, 100% homology. S7 – sRNA library WT_leaf (S1), sequencing dataset, 0–2 mm; S8 – sRNA library WT_ap (S5), sequencing dataset, 0–2 mm; S9 – sRNA library WT_infl (S9), sequencing dataset, 0–2 mm; S10 – summary of normalized counts of sRNA libraries S1–S10, 0 mm; S11 – results of phylogenetic analysis of identified cmo-miRNAs; S12 – list of iso-cmo-miRNAs with different length compared to cmo-miRNAs; S13 – list of iso-cmo-miRNAs with different length and substitutions compared to cmo-miRNAs; S14 – list of putative novel chrysanthemum-specific miRNAs; S15 – results of comparison of previously reported chrysanthemum miRNAs with identified cmo-miRNAs; S16 – Results and bioinformatic validation of RT-qPCR (Ct) obtained for 10 cmo-miRNAs in 12 WT and transgenic chrysanthemum samples; S17 – candidate target mRNAs for identified mature conserved cmo-miRNAs; Gene Ontology categorization; S18 – candidate target mRNAs for identified putative novel cmo-miRNAs; Gene Ontology categorization; S19 – Primers used for stem-loop RT-qPCR analysis of miRNA expression, and expression stability of candidate reference cmo-miRNAs across different chrysanthemum tissues’ (XLSX 1446 KB).

Supplementary material 2 ESM_2 Supplementary Table S20 ‘Known conserved mature miRNA and miRNA* in C. morifolium’ (PDF). (PDF 1587 KB)

Supplementary material 3 ESM_3 Supplementary Figures S1–S9 ‘cmo-miRNAs differential expression and alignment. S1 – Prediction of expression stability for 10 C. morifolium miRNAs by NormFinder. The least stable miRNAs are on the left (green), and the most stable miRNAs are on the right (red); S2 – expression of 10 cmo-miRNAs in leaves by RT-qPCR; S3 – expression of 10 cmo-miRNAs in the apex by RT-qPCR; S4 – expression of 10 cmo-miRNAs in the inflorescence by RT-qPCR; S5 – expression of 10 cmo-miRNAs in the leaf, apex, and inflorescence of the WT plant by RT-qPCR; S6 – expression of 9 selected cmo-miRNAs in the inflorescence by NGS counts (in sequenced libraries) normalized om cmo-miR162a value; S7 – expression of selected cmo-miRNAs by counts (in sequenced libraries); S8 – Sequence alignment of cmo-miR6111.2 and cca-miR6111 precursors; cmo-miR6111/6111* and cmo-miR6111.2/6111.2* positions are indicated; cca-miR6111-5p and 3p are highlighted in red; S9 – Comparison of expression dynamics of cmo-miRNAs during flowering progression from initiation to anthesis in WT and transgenic chrysanthemums. (a) Comparison of NGS evaluated miRNA expression in WT and 92-31 plants. (b) Comparison of RT-qPCR evaluated miRNA expression in ordinarily flowering WT and 111-1 plants. (c) Comparison of RT-qPCR evaluated miRNA expression in early flowering 92-31 and 111-2 plants. The central part includes cmo-miRNAs with similar expression dynamics in both compared plants. The left and right parts represent cmo-miRNAs with certain plant-specific dynamics. The cmo-miRNAs upregulated, downregulated, or maintaining constant expression levels during flowering progression, are shown at the top, bottom, or middle. cmo-miRNAs are given in corresponding numbers’ (XLS). (XLSX 1997 KB)

Supplementary material 4 ESM_4 Supplementary Table S21 ‘Characteristics of precursors for the candidate novel and conserved miRNAs identified in C. morifolium’ (PDF 1417 KB)

Supplementary material 5 ESM_5 Supplementary Figure S10 ‘Secondary structures of known conservative (10-1 – 10-4) and candidate novel (10-5 – 10-34) pre-cmo-miRNAs. 10-1 shows pre-cmo-miR156p; 10-2 – pre-cmo-miR477g; 10-3 – pre-cmo-miR6117; 10-4a – pre-cmo-miR6111.2; 10-4b – pre-cca-miR6111; 10-5 – pre-cmo-miR005; 10-6 – pre-cmo-miR007; 10-7 – pre-cmo-miR008; 10-8 – pre-cmo-miR009; 10-9 – pre-cmo-miR011; 10-10 – pre-cmo-miR013; 10-11 – pre-cmo-miR014; 10-12 – pre-cmo-miR015; 10-13 – pre-cmo-miR018; 10-14 – pre-cmo-miR020; 10-15 – pre-cmo-miR024; 10-16 – pre-cmo-miR025; 10-17 – pre-cmo-miR026; 10-18 – pre-cmo-miR027; 10-19 – pre-cmo-miR028; 10-20 – pre-cmo-miR031; 10-21 – pre-cmo-miR032; 10-22 – pre-cmo-miR033; 10-23 – pre-cmo-miR039; 10-24 – pre-cmo-miR045; 10-25 – pre-cmo-miR046; 10-26 – pre-cmo-miR047; 10-27 – pre-cmo-miR048; 10-28 – pre-cmo-miR052; 10-29 – pre-cmo-miR053; 10-30 – pre-cmo-miR060; 10-31 – pre-cmo-miR062; 10-32 – pre-cmo-miR065; 10-33 – pre-cmo-miR075; 10-34 – pre-cmo-miR077’ (PDF) (PDF 2560 KB)

Supplementary material 6 ESM_6 Supplementary Table S22 ‘In silico predicted mRNA targets for Asteraceae-specific, conserved and novel cmo-miRNAs’ (PDF) (PDF 1110 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shulga, O.A., Nedoluzhko, A.V., Shchennikova, A.V. et al. Profiling of microRNAs in wild type and early flowering transgenic Chrysanthemum morifolium by deep sequencing. Plant Cell Tiss Organ Cult 128, 283–301 (2017). https://doi.org/10.1007/s11240-016-1109-z

Download citation


  • MicroRNA
  • Chrysanthemum morifolium
  • Deep sequencing
  • Flowering time