Advertisement

Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 127, Issue 3, pp 585–590 | Cite as

In vitro embryo culture to shorten the breeding cycle in lentil (Lens culinaris Medik)

  • Carolina BermejoEmail author
  • Ileana Gatti
  • Enrique Cointry
Original Article

Abstract

Breeding in lentil involves hybridization followed by different selection methods and requires 10 years to obtain a cultivar, as only one field generation per year can be produced. To shorten the breeding time it is essential to use biotechnological methods such as in vitro embryo culture combined with SSD method since only one seed is enough to produce the next generation. An efficient in vitro–in vivo system was developed. The best time to extract immature embryos and the best culture medium to obtain their complete development were analyzed. Embryos of Pardina, B1181 (microsperma type), B1051 and A1145 (macrosperma type) were collected at 15, 18, 21, and 24 days after pollination (DAP) and cultured on MS medium with five different concentrations of 6-benzylaminopurine (BAP) (0–0.025–0.05–0.1–0.25 mg L−1). An ANOVA test among genotypes, media, DAP and their interactions was performed. Genotypes, DAP and its interaction showed significant effects on the percentage of shoot production (F = 61.8; F = 79.3; F = 8.5; p < 0.01) and germination (F = 70.7; F = 69.8; F = 3.9; p < 0.01). Medium effect was only significant for germination (F = 8.7; p < 0.01). The microsperma genotypes gave higher percentages of shoot production (>80 %) and germination (>70 %). Although in vitro culture efficiency increased with DAP, 18 DAP was selected due to its high percentages of germination (13–70 %). The medium without BAP was the most suitable for embryo complete development (41–87 %). All plants obtained were morphologically normal and fertile. Using this approach, four generations per year were obtained allowing a rapid development of RILs.

Keywords

Lentil In vitro culture Immature seeds Short generation cycles 

Abbreviations

BAP

6-Benzylaminopurine

DAP

Days after pollination

MS

Murashige and Skoog

RILs

Recombinant inbred lines

SSD

Single seed descent

Notes

Acknowledgments

Financial support for this research work was provided by the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT).

References

  1. Balzarini M, Di Rienzo J (2003) Infogen: Software for Statistical Analysis of Genetic Markers. National University of Córdoba, Córdoba (in Spanish)Google Scholar
  2. Bermejo C, Espósito MA, Cravero V, López Anido F, Cointry E (2012) In vitro plant regeneration from cotyledonary nodes of recombinant inbred lines of lentil. Sci Hortic 134:13–19. doi: 10.1016/j.scienta.2011.11.029 CrossRefGoogle Scholar
  3. Bhattarai SP, De La PRC, Midmore DJ, Palchamy K (2009) In vitro culture of immature seed for rapid generation advancement in tomato. Euphytica 167:23–30. doi: 10.1007/s10681-008-9855-6 CrossRefGoogle Scholar
  4. Christou P (1997) Biotechnology applied to grain legumes. Field Crop Res 53:83–97. doi: 10.1016/S0378-4290(97)00024-5 CrossRefGoogle Scholar
  5. Colijn-Hooymans CM, Hakkert JC, Jansen J, Custers JBM (1994) Competence for regeneration of cucumber cotyledons is restricted to specific developmental stages. Plant Cell Tissue Organ Cult 39:211–217. doi: 10.1007/BF00035972 CrossRefGoogle Scholar
  6. Croser JS, Lulsdorf MM, Davies PA, Clarke HJ, Bayliss KL, Mallikarjuna N, Siddique KHM (2006) Toward doubled haploid production in the Fabaceae: progress, constraints, and opportunities. Crit Rev Plant Sci 25:139–157. doi: 10.1080/07352680600563850 CrossRefGoogle Scholar
  7. Croser J, Ribalta F, Navarro MP, Munday C, Karen N, Edwards K, Castello M et al (2014) Accelerated single seed descent (aSSD)–a novel breeding technique to speed attainment of homozygosity. In: ISAT 2015 2nd international symposium on agricultural technology, Thailand, pp 1–4Google Scholar
  8. Fratini R, Ruiz ML (2006) Interspecific hybridization in the genus Lens applying in vitro embryo rescue. Euphytica 150:271–280. doi: 10.1007/s10681-006-9118-3 CrossRefGoogle Scholar
  9. Germanà MA (2011) Anther culture for haploid and doubled haploid production. Plant Cell Tissue Organ Cult 104:283–300. doi: 10.1007/s11240-010-9852-z CrossRefGoogle Scholar
  10. Goulden CH (1939) Problems in plant selection. In: Burnett RC (ed) Proceedings of the 7th International congress of Genetics. Cambridge University Press, England, pp 132–133Google Scholar
  11. Kasten W, Kunert R (1991) A culture method for isolated immature embryos of different Lupinus species. Biol Zent 110:290–300Google Scholar
  12. Kuchel H, Langridge P, Mosionek L, Williams K, Jefferies SP (2006) The genetic control of milling yield, dough rheology and baking quality of wheat. Theor Appl Genet 112(8):1487–1495. doi: 10.1007/s00122-006-0252-z CrossRefPubMedGoogle Scholar
  13. Marza F, Bai GH, Carver BF, Zhou WC (2005) Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theor Appl Genet 112(4):688–698. doi: 10.1007/s00122-005-0172-3 CrossRefPubMedGoogle Scholar
  14. Mobini SH, Lulsdorf M, Warkentin TD, Vandenberg A (2014) Plant growth regulators improve in vitro flowering and rapid generation advancement in lentil and faba bean. In Vitro Cell Dev Biol Plant 51(1):71–79. doi: 10.1007/s11627-014-9647-8 CrossRefGoogle Scholar
  15. Murashige T, Skoog F (1962) A revised growth regulators for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  16. Ochatt SJ, Sangwan RS (2008) In vitro shortening of generation time in Arabidopsis thaliana. Plant Cell Tissue Organ Cult 93:133–137. doi: 10.1007/s11240-008-9351-7 CrossRefGoogle Scholar
  17. Ochatt SJ, Sangwan RS, Marget P, Ndong YA, Rancillac M, Perney P (2002) New approaches towards the shortening of generation cycles for faster breeding of protein legumes. Plant Breed 121:436–440. doi: 10.1046/j.1439-0523.2002.746803.x CrossRefGoogle Scholar
  18. Özcan S, Barghchi M, Firek S, Draper J (1993) Efficient adventitious shoot regeneration and somatic embryogenesis in pea. Plant Cell Tissue Organ Cult 34:271–277. doi: 10.1007/BF00029716 CrossRefGoogle Scholar
  19. Polanco MC, Ruiz ML (1997) Effect of benzylaminopurine on in vitro and in vivo root development in lentil (Lens culinaris Medik.) Plant Cell Rep 17:22–26. doi: 10.1007/s002990050345 CrossRefGoogle Scholar
  20. Polanco MC, Ruiz ML (2001) Factors that affect plant regeneration from in vitro culture of immature seeds in four lentil cultivars. Plant Cell Tissue Organ Cult 66:133–139. doi: 10.1023/A:1010652818812 CrossRefGoogle Scholar
  21. Polanco MC, Peláez MI, Ruiz ML (1988) Factors affecting callus and shoot formation from in vitro cultures of Lens culinaris Medik. Plant Cell Tissue Organ Cult 15:175–182. doi: 10.1007/BF00035759 CrossRefGoogle Scholar
  22. Ribalta FM, Croser JS, Erskine W, Finnegan PM, Lulsdorf MM, Ochatt S (2014) Antigibberellin-induced reduction of internode length favors in vitro flowering and seed-set in different pea genotypes. Biol Plant 58(1):39–46. doi: 10.1007/s10535-013-0379-0 CrossRefGoogle Scholar
  23. Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131: 892–899. doi: 10.1104/pp.102.017681 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Sugiyama M (1999) Organogenesis in vitro. Curr Opin Plant Biol 2:61–64. doi: 10.1016/S1369-5266(99)80012-0 CrossRefPubMedGoogle Scholar
  25. Surma M, Adamski T, Święcicki W, Barzyk P, Kaczmarek Z, Kuczyńska A, Krystkowiak K et al (2013) Preliminary results of in vitro culture of pea and lupin embryos for the reduction of generation cycles in single seed descent technique. Acta Soc Bot Pol 82(3):231–236. doi: 10.5586/asbp.2013.021 CrossRefGoogle Scholar
  26. Wędzony M, Forster BP, Żur I, Golemiec E, Szechyńska-Hebda M, Dubas E et al (2008) Progress in doubled haploid technology in higher plants. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Berlin, pp 1–34Google Scholar
  27. Wilson VE (1972) Morphology and technique for crossing Lens esculenta Moench. Crop Sci 12:231–232. doi: 10.2135/cropsci1972.0011183X001200020026x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Instituto de Investigaciones en Ciencias Agrarias de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IICAR-CONICET), Facultad de Ciencias AgrariasUniversidad Nacional de Rosario (UNR)ZavallaArgentina
  2. 2.CIUNR, Consejo de Investigadores de la Universidad Nacional de RosarioRosarioArgentina
  3. 3.Cátedra de Mejoramiento Vegetal y Producción de Semillas, Facultad de Ciencias AgrariasUNRZavallaArgentina

Personalised recommendations