Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 127, Issue 2, pp 347–358 | Cite as

A 5′P degradation hot spot influences molecular farming of anticancerogenic nuclease TBN1 in tobacco cells

  • Anna Týcová
  • Rajen J. J. Piernikarczyk
  • Michael Kugler
  • Petra Lipovová
  • Tomáš Podzimek
  • Gerhard Steger
  • Jaroslav MatoušekEmail author
Original Article


Tomato bifunctional nuclease 1 (TBN1) is a polyfunctional protein with anticancerogenic activity originally isolated as an overexpressed protein from viroid-infected tomato. Its molecular farming in plant cells could be a non-expensive source for its biotechnology preparation. So we analysed TBN1 expression in Agrobacterium-infiltrated leaf sectors of Nicotiana benthamiana and in transformed suspension culture of tobacco BY-2 cells. During its transient expression, TBN1 mRNA was strongly degraded within a hot spot localized in the 3′ region. This early degradation process was inhibited by PTGS suppressors p19 and p38 resulting in increased TBN1 mRNA and protein yield. In parallel to degradation of TBN1 mRNA, high mRNA levels of two RNA-dependent RNA polymerases were detected in infiltrated leaf sectors, as well as in the transformed tobacco suspension culture BY-2, where low expression of the nuclease was stably maintained. Higher TBN1 mRNA and nuclease activity levels were found during its molecular farming in RDR6-deficient N. benthamiana plants. By fluorescent microscopy of infiltrated and transformed plant cells, the nuclease-GFP fusion protein was shown to be organized in filament-like structures.


Plant nuclease I mRNA quantification siRNA Nicotiana benthamiana Nicotiana tabacum Post-transcriptional gene silencing 



Post-transcriptional gene silencing


Tomato bifunctional nuclease 1


Nicotiana benthamiana nuclease 1


RNA-dependent RNA polymerase


Real-time quantitative reverse-transcription polymerase-chain-reaction



Authors acknowledge Ing. Lidmila Orctová, Ing. Olga Horáková, Helena Matoušková, and Dr. G. S. Duraisamy (BC CAS, v. v. i., IPMB) for their help and excellent technical assistance. Authors would like to acknowledge Dr. A. K. Mishra (BC CAS, v. v. i., IPMB) for his help and reading of the manuscript. The project was supported by the Alexander von Humboldt Foundation, Research Group Linkage Programme, by the cooperative project FP7-REGPOT-2012-2013-1 MODBIOLIN No. 316304, and by the institutional support RVO:60077344 of the Biology Centre of the CAS, v. v. i., IPMB. The support by Grantová agentura Jihočeské univerzity v Českých Budějovicích Grant No. 143/2013/P is also acknowledged.

Author contributions

J. M., P. L. planned the experiments; A. T., R. J. J. P., M. K., P. L., J. M. performed the experiments and analysed the data. A. T., R. J. J. P., P. L., T. P., G. S. and J. M. wrote the paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

Supplementary material 1 (AVI 14382 KB)

11240_2016_1054_MOESM2_ESM.avi (1.7 mb)
Supplementary material 2 (AVI 1782 KB)
11240_2016_1054_MOESM3_ESM.pdf (950 kb)
Supplementary material 3 (PDF 949 KB)
11240_2016_1054_MOESM4_ESM.pdf (14 kb)
Supplementary material 4 (PDF 14 KB)


  1. Aravin A, Tuschl T (2005) Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett 579:5830–5840. doi: 10.1016/j.febslet.2005.08.009 CrossRefPubMedGoogle Scholar
  2. Arzola L, Chen J, Rattanaporn K, Maclean JM, McDonald KA (2011) Transient co-expression of post-transcriptional gene silencing suppressors for Increased in planta expression of a recombinant anthrax receptor fusion protein. Int J Mol Sci 12:4975–4990. doi: 10.3390/ijms12084975 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baulcombe DC, Molnár A (2004) Crystal structure of p19—a universal suppressor of RNA silencing. Trends Biochem Sci 29:279–281. doi: 10.1016/j.tibs.2004.04.007 CrossRefPubMedGoogle Scholar
  4. Boivin EB, Lepage E, Matton DP, De Crescenzo G, Jolicoeur M (2010) Transient expression of antibodies in suspension plant cell suspension cultures is enhanced when co-transformed with the tomato bushy stunt virus p19 viral suppressor of gene silencing. Biotechnol Progr 26:1534–1543. doi: 10.1002/btpr.485 CrossRefGoogle Scholar
  5. Bourque JE (1995) Antisense strategies for genetic manipulations in plants. Plant Sci 105:125–149. doi: 10.1016/0168-9452(94)04051-6 CrossRefGoogle Scholar
  6. Brown PH, Ho TD (1987) Biochemical properties and hormonal regulation of barley nuclease. Eur J Biochem 168:357–364. doi: 10.1111/j.1432-1033.1987.tb13427.x CrossRefPubMedGoogle Scholar
  7. Dean JD, Goodwin PH, Hsiang T (2002) Comparison of relative RT-PCR and northern blot analyses to measure expression of beta-1,3-glucanase in Nicotiana benthamiana infected with Colltotrichum destructivum. Plant Mol Biol Rep 20:347–356. doi: 10.1007/BF02772122 CrossRefGoogle Scholar
  8. Fang EF, Ng TB (2011) Ribonucleases of different origins with a wide spectrum of medicinal applications. BBA-Rev Cancer 1815:65–74. doi: 10.1016/j.bbcan.2010.09.001 Google Scholar
  9. Farage-Barhom S, Burd S, Sonego L, Mett A, Belausov E, Gidoni D, Lers A (2011) Localization of the Arabidopsis senescence- and cell death-associated BFN1 nuclease: from the ER to fragmented nuclei. Mol Plant 4:1062–1073. doi: 10.1093/mp/ssr045 CrossRefPubMedGoogle Scholar
  10. Garabagi F, Gilbert E, Loos A, McLean MD, Hall JC (2012) Utility of the P19 suppressor of gene-silencing protein for production of therapeutic antibodies in Nicotiana benthamiana expression hosts. Plant Biotechnol J 10:1118–1128. doi: 10.1111/j.1467-7652.2012.00742.x CrossRefPubMedGoogle Scholar
  11. German MA, Luo S, Schroth G, Meyers BC, Green PJ (2009) Construction of parallel analysis of RNA ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome. Nat Protoc 4:356–362. doi: 10.1038/nprot.2009.8 CrossRefPubMedGoogle Scholar
  12. Green PJ (1994) The ribonucleases of higher plants. Annu Rev Plant Phys Plant Mol Biol 45:421–445. doi: 10.1146/annurev.pp.45.060194.002225 CrossRefGoogle Scholar
  13. Hellens R, Mullineaux P, Klee H (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451. doi: 10.1016/S1360-1385(00)01740-4 CrossRefPubMedGoogle Scholar
  14. Ito J, Fukuda H (2002) ZEN1 is a key enzyme in the degradation of nuclear DNA during programmed cell death of tracheary elements. Plant Cell 14:3201–3211. doi: 10.1105/tpc.006411 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jin H, Zhu JK (2010) A viral suppressor protein inhibits host RNA silencing by hooking up with Argonautes. Gene Dev 24:853–856. doi: 10.1101/gad.1927310 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Johansen W, Wilson RC (2008) Viral suppressor proteins show varying abilities and effectiveness to suppress transgene-induced post-transcriptional gene silencing of endogenous Chalcone synthase in transgenic Arabidopsis. Plant Cell Rep 27:911–921. doi: 10.1007/s00299-008-0508-y CrossRefPubMedGoogle Scholar
  17. Kovaľ T, Lipovová P, Podzimek T, Matoušek J, Dušková J, Skálová T, Štěpánková A, Hašek J, Dohnálek J (2013) Plant multifunctional nuclease TBN1 with unexpected phospholipase activity: structural study and reaction-mechanism analysis. Acta Crystallogr D 69:213–226. doi: 10.1107/S0907444912043697 CrossRefPubMedGoogle Scholar
  18. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73. doi: 10.1093/nar/gkt1181 CrossRefPubMedGoogle Scholar
  19. Krüger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34:W451–W454. doi: 10.1093/nar/gkl243 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Matoušek J, Matoušek J (2010) Plant ribonuclease and nucleases as antiproliferative agens targets human tumors growing in mice. Recent Pat DNA Gene Seq 4:29–39. doi: 10.2174/187221510790410813 CrossRefPubMedGoogle Scholar
  21. Matoušek J, Vrba L, Škopek J, Orctová L, Pešina K, Heyerick A, Baulcombe D, De Keukeleire D (2006) Sequence analysis of a “true” chalcone synthase (chs_H1) oligofamily from hop (Humulus lupulus L.) and PAP1 activation of chs_H1 in heterologous systems. J Agr Food Chem 54:7606–7615. doi: 10.1021/jf061785g CrossRefGoogle Scholar
  22. Matoušek J, Kozlová P, Orctová L, Schmitz A, Pešina K, Bannach O, Diermann N, Steger G, Riesner D (2007) Accumulation of viroid-specific small RNAs and increase of nucleolytic activities linked to viroid-caused pathogenesis. Biol Chem 388:1–13. doi: 10.1515/BC.2007.001 CrossRefPubMedGoogle Scholar
  23. Matoušek J, Orctová L, Škopek J, Pešina K, Steger G (2008) Elimination of hop latent viroid upon developmental activation of pollen nucleases. Biol Chem 389:905–918. doi: 10.1515/BC.2008.096 PubMedGoogle Scholar
  24. Matoušek J, Podzimek T, Poučková P, Stehlík J, Škvor J, Souček J, Matoušek J (2009) Antitumor effects and cytotoxicity of recombinant plant nucleases. Oncol Res 18:163–171. doi: 10.3727/096504009790217425 CrossRefPubMedGoogle Scholar
  25. Matoušek J, Podzimek T, Poučková P, Stehlík J, Škvor J, Lipovová P, Matoušek J (2010) Antitumor activity of apoptotic nuclease TBN1 from L. esculentum. Neoplasma 57:339–348. doi: 10.4149/neo_2010_04_339 CrossRefPubMedGoogle Scholar
  26. Matoušek J, Kocábek T, Patzak J, Füssy Z, Procházková J, Heyerick A (2012) Combinatorial analysis of lupulin gland transcription factors from R2R3Myb, bHLH and WDR families indicates a complex regulation of chs_H1 genes essential for prenylflavonoid biosynthesis in hop (Humulus Lupulus L.) BMC Plant Biol 12:27. doi: 10.1186/1471-2229-12-27 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Matoušek J, Piernikarczyk RJJ, Týcová A, Duraisamy GS, Kocábek T, Steger G (2015) Expression of SANT/HTH Myb mRNA, a plant morphogenesis-regulating transcription factor, changes due to viroid infection. J Plant Physiol 183:85–94. doi: 10.1016/j.jplph.2015.06.001 CrossRefPubMedGoogle Scholar
  28. Muramoto Y, Watanabe A, Nakamura T, Takabe T (1999) Enhanced expression of a nuclease gene in leaves of barley plants under salt stress. Gene 234:315–321. doi: 10.1016/S0378-1119(99)00193-6 CrossRefPubMedGoogle Scholar
  29. Panavas T, Pikula A, Reid PD, Rubinstein B, Walker EL (1999) Identification of senescence-associated genes from daylily petals. Plant Mol Biol 40:237–248. doi: 10.1023/A:1006146230602 CrossRefPubMedGoogle Scholar
  30. Pérez-Amador MA, Abler M, Jay de Rocher E, Thompson DM, van Hoof A, LeBrasseur ND, Lers A, Green PJ (2000) Identification of BFN1, a bifunctional nuclease induced during leaf and stem senescence in Arabidopsis. Plant Physiol 122:169–179. doi: 10.1104/pp.122.1.169 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45. doi: 10.1093/nar/29.9.e45 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Podzimek T, Matoušek J, Lipovová P, Poučková P, Spiwok V, Šantrůček J (2011) Biochemical properties of three plant nucleases with anticancer potential. Plant Sci 180:343–351. doi: 10.1016/j.plantsci.2010.10.006 CrossRefPubMedGoogle Scholar
  33. Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66. doi: 10.1016/S0304-3940(02)01423-4 CrossRefPubMedGoogle Scholar
  34. Schumacher J, Meyer N, Riesner D, Weidemann HL (1986) Diagnostic procedure for detection of viroids and viruses with circular RNAs by “return”-gel electrophoresis. J Phytopathol 115:332–343. doi: 10.1111/j.1439-0434.1986.tb04346.x CrossRefGoogle Scholar
  35. Schwach F, Vaistij FE, Jones L, Baulcombe DC (2005) An RNA-dependent RNA polymerase prevents meristem invasion by potato virus X and is required for the activity but not the production of a systemic silencing signal. Plant Physiol 138:1842–1852. doi: 10.1104/pp.105.063537 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Siddiqui SA, Sarmiento C, Truve E, Lehto H, Lehto K (2008) Phenotypes and functional effects caused by various viral RNA silencing suppressors in transgenic Nicotiana benthamina and N. tabacum. Mol Plant-Microbe Interact 21:178–187. doi: 10.1094/MPMI-21-2-0178 CrossRefPubMedGoogle Scholar
  37. Thomas CL, Lech V, Lederer C, Maule AJ (2003) Turnip crinkle virus coat protein mediates suppression of RNA silencing in Nicotiana benthamiana. Virology 306:33–41. doi: 10.1016/S0042-6822(02)00018-1 CrossRefPubMedGoogle Scholar
  38. Vargason JM, Szittya G, Burgyán J, Hall TMT (2003) Size selective recognition of siRNA by an RNA silencing suppressor. Cell 115:799–811. doi: 10.1016/S0092-8674(03)00984-X CrossRefPubMedGoogle Scholar
  39. Veluthambi K, Gupta AK, Sharma A (2003) The current status of plant transformation technologies. Curr Sci India 84:368–380Google Scholar
  40. Voinnet O (2005) Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 6:206–220. doi: 10.1038/nrg1555 CrossRefPubMedGoogle Scholar
  41. Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. P Natl Acad Sci USA 96:14147–14152. doi: 10.1073/pnas.96.24.14147 CrossRefGoogle Scholar
  42. Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based in suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956. doi: 10.1046/j.1365-313X.2003.01676.x CrossRefPubMedGoogle Scholar
  43. Vrba L, Matoušek J (2005) Expression of modified 7SL RNA gene in transgenic Solanum tuberosum plants. Biol Plantarum 49:371–380. doi: 10.1007/s10535-005-0010-0 CrossRefGoogle Scholar
  44. Willmann MR, Endres MW, Cook RT, Gregory BD (2011) The functions of RNA-dependent RNA polymerases in Arabidopsis. Arabidopsis Book 9:e0146. doi: 10.1199/tab.0146 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wilson CM (1982) Plant nucleases: biochemistry and development of multiple molecular forms. Isozymes-Curr T Biol 6:33–54Google Scholar
  46. Xia Z, Zhu Z, Zhu J, Zhou R (2009) Recognition mechanism of siRNA by viral p19 suppressor of RNA silencing: a molecular dynamics study. Biophys J 96:1761–1769. doi: 10.1016/j.bpj.2008.11.047 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:0642–0652. doi: 10.1371/journal.pbio.0020104 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Anna Týcová
    • 1
    • 2
  • Rajen J. J. Piernikarczyk
    • 3
  • Michael Kugler
    • 4
  • Petra Lipovová
    • 4
  • Tomáš Podzimek
    • 4
  • Gerhard Steger
    • 3
  • Jaroslav Matoušek
    • 1
    Email author
  1. 1.Biology Centre of the CASv. v. i., Institute of Plant Molecular BiologyČeské BudějoviceCzech Republic
  2. 2.Faculty of ScienceUniversity of South Bohemia in České BudějoviceČeské BudějoviceCzech Republic
  3. 3.Institute of Physical BiologyHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
  4. 4.University of Chemistry and Technology PraguePragueCzech Republic

Personalised recommendations