Advertisement

Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 126, Issue 3, pp 541–552 | Cite as

Genetic transformation of grape varieties and rootstocks via organogenesis

  • Xiaoqing Xie
  • Cecilia B. Agüero
  • Yuejin WangEmail author
  • M. Andrew WalkerEmail author
Original Article

Abstract

A protocol was standardized to regenerate six grape cultivars through meristematic bulk (MB) induction, which was used for genetic transformation. Meristematic bulk induction worked best with Vitis vinifera ‘Thompson Seedless’ (98.4 %), followed by ‘Chardonnay’ (97.6 %), ‘Redglobe’ (90.2 %) and ‘Cabernet Sauvignon’ (86.2 %), and was less successful with Vitis rupestris ‘St. George’ (85.4 %) and ‘101-14 Millardet et de Grasset (Vitis riparia × V. rupestris)’ (79.6 %). Benzylaminopurine and naphthaleneacetic acid was the most effective combination of cytokinin and auxin for MB formation. 100 µg/ml kanamycin was a better antibiotic selection agent than 2.0 µg/ml hygromycin during transformation. The expression of green fluorescent protein was evaluated with in vitro leaves and roots. Transformation efficiency using meristematic slices was a function of the genotype. Transformation efficiency was greatest in Chardonnay (51.7 %), followed by Thompson Seedless (42.3 %), St. George (41.6 %), Redglobe (40 %), Cabernet Sauvignon (35.6 %) and 101-14 Mgt (29.9 %). This study found that MB induction was a fast and simple alternative for genetic transformation of grape cultivars.

Keywords

Grape Meristematic bulk Regeneration Genetic transformation 

Abbreviations

BA

6-Benzylaminopurine

NAA

α-Naphthaleneacetic acid

TDZ

Thidiazuron

MB

Meristematic bulk

Notes

Acknowledgments

This work was supported by the Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China in conjunction with the assistantship of the Department of Viticulture and Enology at University of California, Davis.

Funding

The research was done with the grant of the National Science Foundation of China (Grant No. 31372039).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Author contributions

Conceived and designed the experiments: CBA MAW. Performed the experiments: XX CBA. Analyzed the data: XX. Contributed reagents/materials/analysis tools: YW MAW. Wrote the paper: XX CBA YW MAW. All authors read and approved the final manuscript.

Supplementary material

11240_2016_1023_MOESM1_ESM.docx (5.7 mb)
Supplementary material 1 (DOCX 5835 kb)

References

  1. Agüero CB, Meredith CP, Dandekar AM (2006) Genetic transformation of Vitis vinifera L. cvs Thompson Seedless and Chardonnay with the pear PGIP and GFP encoding genes. Vitis 45:1–8Google Scholar
  2. Barlass M, Skene K (1980) Studies on the fragmented shoot apex of grapevine: II. Factors affecting growth and differentiation in vitro. J Exp Bot 31:489–495CrossRefGoogle Scholar
  3. Bertsch C, Kieffer F, Maillot P, Farine S, Butterlin G, Merdinoglu D, Walter B (2005) Genetic chimerism of Vitis vinifera cv. Chardonnay 96 is maintained through organogenesis but not somatic embryogenesis. BMC Plant Biol 5:20CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bouquet A, Torregrosa L, Iocco P, Thomas MR (2007) Grapevine (Vitis vinifera L.). In: Wang K (ed) Agrobacterium protocols, vol 2. Springer, New York, pp 273–285Google Scholar
  5. Chaïb J, Torregrosa L, Mackenzie D, Corena P, Bouquet A, Thomas MR (2010) The grape microvine: a model system for rapid forward and reverse genetics of grapevines. Plant J 62:1083–1092PubMedGoogle Scholar
  6. Colby SM, Meredith CP (1990) Kanamycin sensitivity of cultured tissues of Vitis. Plant Cell Rep 9:237–240CrossRefPubMedGoogle Scholar
  7. Dutt M, Li Z, Dhekney S, Gray D (2007) Transgenic plants from shoot apical meristems of Vitis vinifera L. “Thompson Seedless” via Agrobacterium-mediated transformation. Plant Cell Rep 26:2101–2110CrossRefPubMedGoogle Scholar
  8. Favre J (1977) Premiers resultats concernant l’obtention in vitro de neoformations caulinaires chez la vigne. Annales de l’Amélioration des Plantes 27:151–169Google Scholar
  9. Franks T, He DG, Thomas M (1998) Regeneration of transgenic shape Vitis vinifera L. Sultana plants: genotypic and phenotypic analysis. Mol Breed 4:321–333CrossRefGoogle Scholar
  10. Franks T, Botta R, Thomas M, Franks J (2002) Chimerism in grapevines: implications for cultivar identity, ancestry and genetic improvement. Theor Appl Genet 104:192–199CrossRefPubMedGoogle Scholar
  11. Gray DJ (1995) Somatic embryogenesis in grape. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants. Springer, New York, pp 191–217. doi: 10.1007/978-94-011-0491-3_12 CrossRefGoogle Scholar
  12. Gray DJ, Li ZT, Dhekney SA (2014) Precision breeding of grapevine (Vitis vinifera L.) for improved traits. Plant Sci 228:3–10CrossRefPubMedGoogle Scholar
  13. Hanson B, Engler D, Moy Y, Newman B, Ralston E, Gutterson N (1999) A simple method to enrich an Agrobacterium transformed population for plants containing only T-DNA sequences. Plant J 19:727–734CrossRefPubMedGoogle Scholar
  14. Ibáñez A, Agüero CB, Escobar MA, Dandekar AM (2011) Transgenic fruit and nut tree crops review. In: Mou B, Scorza R (eds) Transgenic horticultural crops: challenges and opportunities. Taylor & Francis Inc, Washington, DC, pp 1–29. doi: 10.1201/b10952-2 CrossRefGoogle Scholar
  15. Iocco P, Franks T, Thomas M (2001) Genetic transformation of major wine grape cultivars of Vitis vinifera L. Transgenic Res 10:105–112CrossRefPubMedGoogle Scholar
  16. Kiselev K, Dubrovina A, Veselova M, Bulgakov V, Fedoreyev S, Zhuravlev YN (2007) The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells. J Biotechnol 128:681–692CrossRefPubMedGoogle Scholar
  17. Kurmi U, Sharma D, Tripathi M, Tiwari R, Baghel B, Tiwari S (2011) Plant regeneration of Vitis vinifera (L) via direct and indirect organogenesis from cultured nodal segments. J Agric Technol 7:721–737Google Scholar
  18. Li Z, Dhekney S, Dutt M, Van Aman M, Tattersall J, Kelley K, Gray D (2006) Optimizing Agrobacterium-mediated transformation of grapevine. In Vitro Cell Dev Biol Plant 42:220–227CrossRefGoogle Scholar
  19. López-Pérez A-J, Velasco L, Pazos-Navarro M, Dabauza M (2008) Development of highly efficient genetic transformation protocols for table grape Sugraone and Crimson Seedless at low Agrobacterium density. Plant Cell, Tissue Organ Cult 94:189–199CrossRefGoogle Scholar
  20. Maqsood A, Khan N, Hafiz IA, Abbasi NA, Anjum MA, Hussain S (2015) Effect of various factors on the efficiency of Agrobacterium-mediated transformation of grape (Vitis vinifera L.). Vegetos Int J Plant Res 28:171–178Google Scholar
  21. Martinelli L, Mandolino G (1994) Genetic transformation and regeneration of transgenic plants in grapevine (Vitis rupestris S.). Theor Appl Genet 88:621–628CrossRefPubMedGoogle Scholar
  22. Martinelli L, Mandolino G (2001) Transgenic grapes (Vitis species). In: Bajaj YPS (ed) Transgenic crops II. Springer, New York, pp 325–338. doi: 10.1007/978-3-642-56901-2_21 CrossRefGoogle Scholar
  23. Mezzetti B, Pandolfini T, Navacchi O, Landi L (2002) Genetic transformation of Vitis vinifera via organogenesis. BMC Biotechnol 2:18CrossRefPubMedPubMedCentralGoogle Scholar
  24. Mullins MG, Srinivasan C (1976) Somatic embryos and plantlets from an ancient clone of the grapevine (cv. Cabernet-Sauvignon) by apomixis in vitro. J Exp Bot 27:1022–1030CrossRefGoogle Scholar
  25. Mullins MG, Tang FA, Facciotti D (1990) Agrobacterium-mediated genetic transformation of grapevines: transgenic plants of Vitis rupestris Scheele and buds of Vitis vinifera L. Nat Biotechnol 8:1041–1045CrossRefGoogle Scholar
  26. Mulwa R, Norton M, Farrand S, Skirvin R (2015) Agrobacterium-mediated transformation and regeneration of transgenic’Chancellor’wine grape plants expressing the tfd A gene. Vitis 46:110–115Google Scholar
  27. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  28. Nicholson KL, Tarlyn N, Armour T, Swanson ME, Dhingra A (2012) Effect of phyllotactic position and cultural treatments toward successful direct shoot organogenesis in dwarf ‘Pixie’grapevine (Vitis vinifera L.). Plant Cell, Tissue Organ Cult 111:123–129CrossRefGoogle Scholar
  29. Perl A, Lotan O, Abu-Abied M, Holland D (1996) Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): the role of antioxidants during grape-Agrobacterium interactions. Nat Biotechnol 14:624–628CrossRefPubMedGoogle Scholar
  30. Péros J-P, Torregrosa L, Berger G (1998) Variability among Vitis vinifera cultivars in micropropagation, organogenesis and antibiotic sensitivity. J Exp Bot 49:171–179CrossRefGoogle Scholar
  31. Rajasekaran K, Mullins MG (1981) Organogenesis in internode explants of grapevines. Vitis 20:218–227Google Scholar
  32. Reisch BI, Martens MH, Cheng ZM (1990) High frequency regeneration from grapevine petioles: extension to new genotypes. In: Proceedings of the 5th International Symposium on Grape Breeding, Pfalz, Germany, pp 419–422Google Scholar
  33. Scorza R, Cordts J, Ramming D, Emershad R (1995) Transformation of grape (Vitis vinifera L.) zygotic-derived somatic embryos and regeneration of transgenic plants. Plant Cell Rep 14:589–592CrossRefPubMedGoogle Scholar
  34. Scorza R, Cordts J, Gray D, Gonsalves D, Emershad R, Ramming D (1996) Producing transgenic ‘Thompson Seedless’ grape (Vitis vinifera L.) plants. J Am Soc Hortic Sci 121:616–619Google Scholar
  35. Stamp JA, Colby SM, Meredith CP (1990a) Direct shoot organogenesis and plant regeneration from leaves of grape (Vitis spp.). Plant Cell, Tissue Organ Cult 22:127–133CrossRefGoogle Scholar
  36. Stamp JA, Colby SM, Meredith CP (1990b) Improved shoot organogenesis from leaves of grape. J Am Soc Hortic Sci 115:1038–1042Google Scholar
  37. Thomas M, Matsumoto S, Cain P, Scott N (1993) Repetitive DNA of grapevine: classes present and sequences suitable for cultivar identification. Theor Appl Genet 86:173–180CrossRefPubMedGoogle Scholar
  38. Torregrosa L, Bouquet A (1996) Adventitious bud formation and shoot development from in vitro leaves of Vitis × Muscadinia hybrids. Plant Cell, Tissue Organ Cult 45:245–252CrossRefGoogle Scholar
  39. Torregrosa L, Iocco P, Thomas M (2002) Influence of Agrobacterium strain, culture medium, and cultivar on the transformation efficiency of Vitis vinifera L. Am J Enol Vitic 53:183–190Google Scholar
  40. Wang Q, Li P, Hanania U, Sahar N, Mawassi M, Gafny R, Sela I, Tanne E, Perl A (2005) Improvement of Agrobacterium-mediated transformation efficiency and transgenic plant regeneration of Vitis vinifera L. by optimizing selection regimes and utilizing cryopreserved cell suspensions. Plant Sci 168:565–571CrossRefGoogle Scholar
  41. Zhang P, Yu Z-Y, Cheng Z-M, Zhang Z, Tao J-M (2011) In vitro explants regeneration of the grape ‘Wink’(Vitis vinifera L. ‘Wink’). J Plant Breed Crop Sci 3:276–282Google Scholar
  42. Zhou Q, Dai L, Cheng S, He J, Wang D, Zhang J, Wang Y (2014) A circulatory system useful both for long-term somatic embryogenesis and genetic transformation in Vitis vinifera L. cv. Thompson Seedless. Plant Cell, Tissue Organ Cult 118:157–168CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.College of HorticultureNorthwest A&F UniversityYanglingPeople’s Republic of China
  2. 2.Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureYanglingPeople’s Republic of China
  3. 3.State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A&F UniversityYanglingPeople’s Republic of China
  4. 4.Department of Viticulture and EnologyUniversity of California, DavisDavisUSA

Personalised recommendations