Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 126, Issue 2, pp 239–253 | Cite as

Ectopic expression of the maize ZmADF3 gene in Arabidopsis revealing its functions in kernel development

  • Dahe Qiao
  • Yongbin Dong
  • Long Zhang
  • Qiang Zhou
  • Chunhui Hu
  • Yangliu Ren
  • Yuling LiEmail author
Original Article


Actin-depolymerizing factors (ADFs) are the members of actin-binding proteins, which play pivotal roles in various cellular processes in plant cells. In this study, we isolated an ADF gene ZmADF3 from the kernels of a popcorn inbred N04. This gene had a 417 bp open reading frame (ORF) which encoded for 139 amino acids. Phylogenetic analysis showed that ZmADF3 had a high sequence identity with TaADF3 and OsADF4. Quantitative real-time PCR and western blotting showed that ZmADF3 expressed variously according to tissues and developmental stages during kernel development both in RNA and in protein levels. A 1738 bp promoter for ZmADF3 was obtained and the cis-acting regulatory elements were predicted. Furthermore, yeast two-hybrid screening revealed that ZmADF3 interacted with glyceradehyde-3-phosphate dehydrogenase (GAPDH). Heterologous overexpression of ZmADF3 showed an increase in seed size in transgenic Arabidopsis plants mainly through the increase in cell size. In addition, the positive regulation of seed size genes SHB1 and IKU1 were up-regulated while the negative regulators AP2 and ARF2 were down-regulated in the transgenic lines. Our results showed that ZmADF3 might play important roles in kernel development in maize. However, further research should be done to thoroughly explore the mechanism of ZmADF3 in playing these functions.


ZmADF3 Yeast two-hybrid Glyceradehyde-3-phosphate dehydrogenase Heterologous overexpression Seed size 



This work was funded by the Plan for Fundamental and Forward Technology Research in Henan Province (121100910400), the Plan for Scientific Innovation Talent of Henan Province (124200510003) and the Earmarked Fund for Henan Agriculture Research System (S2010-02-G01).

Author contribution statement

D. Qiao performed most experiments, data analyses and manuscript preparation. Y. Dong contributed to some supervision of experiments. L. Zhang assisted in some data analysis and manuscript preparation. Q. Zhou, C. Hu and Y. Ren took part in the Arabidopsis planting and management. Y. Li was responsible for the whole study and the manuscript preparation.

Compliance with ethical standards

Conflict of interest

All authors declared that they had no conflict of interest.

Supplementary material

11240_2016_994_MOESM1_ESM.doc (100 kb)
Supplementary material 1 (DOC 100 kb)
11240_2016_994_MOESM2_ESM.doc (46 kb)
Supplementary material 2 (DOC 46 kb)


  1. Allwood EG, Smertenko AP, Hussey PJ (2001) Phosphorylation of plant actin-depolymerising factor by calmodulin-like domain protein kinase. Febs Lett 499:97–100CrossRefPubMedGoogle Scholar
  2. Allwood EG, Anthony RG, Smertenko AP, Reichelt S, Drobak BK, Doonan JH, Weeds AG, Hussey PJ (2002) Regulation of the pollen-specific actin-depolymerizing factor LlADF1. Plant Cell 14(11):2915–2927CrossRefPubMedPubMedCentralGoogle Scholar
  3. Augustine RC, Vidali L, Kleinman KP, Bezanilla M (2008) Actin depolymerizing factor is essential for viability in plants, and its phosphoregulation is important for tip growth. Plant J 54(5):863–875CrossRefPubMedGoogle Scholar
  4. Bernstein BW, Bamburg JR (2010) ADF/cofilin: a functional node in cell biology. Trends Cell Biol 20(4):187–195CrossRefPubMedPubMedCentralGoogle Scholar
  5. Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J (2014) Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev 94(1):235–263CrossRefPubMedGoogle Scholar
  6. Bou DF, van Oostende C, Geitmann A (2011) Spatial and temporal expression of actin depolymerizing factors ADF7 and ADF10 during male gametophyte development in Arabidopsis thaliana. Plant Cell Physiol 52(7):1177–1192CrossRefGoogle Scholar
  7. Bowman GD, Nodelman IM, Hong Y, Chua NH, Lindberg U, Schutt CE (2000) A comparative structural analysis of the ADF/cofilin family. Proteins 41(3):374–384CrossRefPubMedGoogle Scholar
  8. Burgos-Rivera B, Ruzicka DR, Deal RB, McKinney EC, King-Reid L, Meagher RB (2008) Actin depolymerizing factor 9 controls development and gene expression in Arabidopsis. Plant Mol Biol 68(6):619–632CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cai RH, Zhao Y, Wang YF, Lin YX, Peng XJ, Li Q, Chang YW, Jiang HY, Xiang Y, Cheng BJ (2014) Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice. Plant Cell Tissue Organ Cult 119:565–577CrossRefGoogle Scholar
  10. Carlier MF, Laurent V, Santolini J, Melki R, Didry D, Xia GX, Hong Y, Chua NH, Pantaloni D (1997) Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol 136(6):1307–1322CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen CY, Wong EI, Vidali L, Estavillo A, Hepler PK, Wu HM, Cheung AY (2002) The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell 14(9):2175–2190CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cheng X, Wu Y, Guo J, Du B, Chen R, Zhu L, He G (2013) A rice lectin receptor-like kinase that is involved in innate immune responses also contributes to seed germination. Plant J 76(4):687–698CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chi J, Han Y, Wang X, Wu L, Zhang G, Ma Z (2013) Overexpression of the Gossypium barbadense actin-depolymerizing factor 1 gene mediates biological changes in transgenic tobacco. Plant Mol Biol Rep 31:833–839CrossRefGoogle Scholar
  14. Cho JI, Lim HM, Siddiqui ZS, Park SH, Kim AR, Kwon TR, Lee SK, Park SC, Jeong MJ, Lee GS (2014) Over-expression of PsGPD, a mushroom glyceraldehyde-3-phosphate dehydrogenase gene, enhances salt tolerance in rice plants. Biotechnol Lett 36(8):1641–1648CrossRefPubMedGoogle Scholar
  15. Clement M, Ketelaar T, Rodiuc N, Banora MY, Smertenko A, Engler G, Abad P, Hussey PJ, de Almeida EJ (2009) Actin-depolymerizing factor 2-mediated actin dynamics are essential for root-knot nematode infection of Arabidopsis. Plant Cell 21(9):2963–2979CrossRefPubMedPubMedCentralGoogle Scholar
  16. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743CrossRefPubMedGoogle Scholar
  17. Daher FB, Geitmann A (2012) Actin depolymerizing factors ADF7 and ADF10 play distinct roles during pollen development and pollen tube growth. Plant Signal Behav 7(7):879–881CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dong CH, Hong Y (2013) Arabidopsis CDPK6 phosphorylates ADF1 at N-terminal serine 6 predominantly. Plant Cell Rep 32(11):1715–1728CrossRefPubMedGoogle Scholar
  19. Dong CH, Kost B, Xia G, Chua NH (2001a) Molecular identification and characterization of the Arabidopsis AtADF1, AtADF5 and AtADF6 genes. Plant Mol Biol 45(5):517–527CrossRefPubMedGoogle Scholar
  20. Dong CH, Xia GX, Hong Y, Ramachandran S, Kost B, Chua NH (2001b) ADF proteins are involved in the control of flowering and regulate F-actin organization, cell expansion, and organ growth in Arabidopsis. Plant Cell 13(6):1333–1346CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dong CH, Tang WP, Liu JY (2013) Arabidopsis AtADF1 is functionally affected by mutations on actin binding sites. J Integr Plant Biol 55(3):250–261CrossRefPubMedGoogle Scholar
  22. Dong Y, Wang Q, Zhang L, Du C, Xiong W, Chen X, Deng F, Ma Z, Qiao D, Hu C, Ren Y, Li Y (2015) Dynamic proteomic characteristics and network integration revealing key proteins for two kernel tissue developments in popcorn. PLoS One 10(11):e143181Google Scholar
  23. Edwards D, Murray JA, Smith AG (1998) Multiple genes encoding the conserved CCAAT-box transcription factor complex are expressed in Arabidopsis. Plant Physiol 117(3):1015–1022CrossRefPubMedPubMedCentralGoogle Scholar
  24. Feng Y, Liu Q, Xue Q (2006) Comparative study of rice and Arabidopsis actin-depolymerizing factors gene families. J Plant Physiol 163(1):69–79CrossRefPubMedGoogle Scholar
  25. Finley Jr RL (2007) A guide to yeast two-hybrid experiments. In: Zuk D (ed) Evaluating techniques in biochemical research (Cambridge, MA: Cell Press),
  26. Fu Y, Duan X, Tang C, Li X, Voegele RT, Wang X, Wei G, Kang Z (2014) TaADF7, an actin-depolymerizing factor, contributes to wheat resistance against Puccinia striiformis f. sp. tritici. Plant J 78(1):16–30CrossRefPubMedGoogle Scholar
  27. Hajduch M, Hearne LB, Miernyk JA, Casteel JE, Joshi T, Agrawal GK, Song Z, Zhou M, Xu D, Thelen JJ (2010) Systems analysis of seed filling in Arabidopsis: using general linear modeling to assess concordance of transcript and protein expression. Plant Physiol 152:2078–2087CrossRefPubMedPubMedCentralGoogle Scholar
  28. Henty-Ridilla JL, Li J, Day B, Staiger CJ (2014) Actin depolymerizing factor 4 regulates actin dynamics during innate immune signaling in Arabidopsis. Plant Cell 26(1):340–352CrossRefPubMedPubMedCentralGoogle Scholar
  29. Huang YC, Huang WL, Hong CY, Lur HS, Chang MC (2012) Comprehensive analysis of differentially expressed rice actin depolymerizing factor gene family and heterologous overexpression of OsADF3 confers Arabidopsis thaliana drought tolerance. Rice (NY) 5(1):33CrossRefGoogle Scholar
  30. Hussey PJ, Ketelaar T, Deeks MJ (2006) Control of the actin cytoskeleton in plant cell growth. Annu Rev Plant Biol 57:109–125CrossRefPubMedGoogle Scholar
  31. Ishikawa H (1990) Functional significances of the cytoskeleton. Hum Cell 3(4):289–293PubMedGoogle Scholar
  32. Jiang CJ, Weeds AG, Hussey PJ (1997a) The maize actin-depolymerizing factor, ZmADF3, redistributes to the growing tip of elongating root hairs and can be induced to translocate into the nucleus with actin. Plant J 12(5):1035–1043CrossRefPubMedGoogle Scholar
  33. Jiang CJ, Weeds AG, Khan S, Hussey PJ (1997b) F-actin and G-actin binding are uncoupled by mutation of conserved tyrosine residues in maize actin depolymerizing factor (ZmADF). Proc Natl Acad Sci USA 94(18):9973–9978CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jiang WB, Huang HY, Hu YW, Zhu SW, Wang ZY, Lin WH (2013) Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiol 162(4):1965–1977CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jofuku KD, Omidyar PK, Gee Z, Okamuro JK (2005) Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc Natl Acad Sci USA 102(8):3117–3122CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ketelaar T (2013) The actin cytoskeleton in root hairs: all is fine at the tip. Curr Opin Plant Biol 16(6):749–756CrossRefPubMedGoogle Scholar
  37. Kim SR, Kim Y, An G (1993) Molecular cloning and characterization of anther-preferential cDNA encoding a putative actin-depolymerizing factor. Plant Mol Biol 21(1):39–45CrossRefPubMedGoogle Scholar
  38. Kost B, Mathur J, Chua NH (1999) Cytoskeleton in plant development. Curr Opin Plant Biol 2(6):462–470CrossRefPubMedGoogle Scholar
  39. Kost B, Bao YQ, Chua NH (2002) Cytoskeleton and plant organogenesis. Philos Trans R Soc Lond B Biol Sci 357(1422):777–789CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) Plant care, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327CrossRefPubMedPubMedCentralGoogle Scholar
  41. Li XB, Xu D, Wang XL, Huang GQ, Luo J, Li DD, Zhang ZT, Xu WL (2010) Three cotton genes preferentially expressed in flower tissues encode actin-depolymerizing factors which are involved in F-actin dynamics in cells. J Exp Bot 61(1):41–53CrossRefPubMedGoogle Scholar
  42. Lin F, Jiang L, Liu Y, Lv Y, Dai H, Zhao H (2014) Genome-wide identification of housekeeping genes in maize. Plant Mol Biol 86(4–5):543–554CrossRefPubMedGoogle Scholar
  43. Liu Y, Li J, Li Y, Wei M, Cui Q, Wang Q (2010) Molecular cloning, sequence and expression analysis of ZmArf2, a maize ADP-ribosylation factor. Mol Biol Rep 37(2):755–761CrossRefPubMedGoogle Scholar
  44. Liu YB, Qin LJ, Han LZ, Xiang Y, Zhao DG (2015) Overexpression of maize SDD1 (ZmSDD1) improves drought resistance in Zea mays L. by reducing stomatal density. Plant Cell Tissue Organ Cult 122:147–159CrossRefGoogle Scholar
  45. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408CrossRefPubMedGoogle Scholar
  46. Lopez I, Anthony RG, Maciver SK, Jiang CJ, Khan S, Weeds AG, Hussey PJ (1996) Pollen specific expression of maize genes encoding actin depolymerizing factor-like proteins. Proc Natl Acad Sci USA 93(14):7415–7420CrossRefPubMedPubMedCentralGoogle Scholar
  47. Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A (2005) MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci USA 102(48):17531–17536CrossRefPubMedPubMedCentralGoogle Scholar
  48. Maciver SK, Hussey PJ (2002) The ADF/cofilin family: actin-remodeling proteins. Genome Biol 3(5):s3007CrossRefGoogle Scholar
  49. Mitchell A, Chang HY, Daugherty L, Fraser M, Hunter S, Lopez R, McAnulla C, McMenamin C, Nuka G, Pesseat S, Sangrador-Vegas A, Scheremetjew M, Rato C, Yong SY, Bateman A, Punta M, Attwood TK, Sigrist CJ, Redaschi N, Rivoire C, Xenarios I, Kahn D, Guyot D, Bork P, Letunic I, Gough J, Oates M, Haft D, Huang H, Natale DA, Wu CH, Orengo C, Sillitoe I, Mi H, Thomas PD, Finn RD (2015) The interpro protein families database: the classification resource after 15 years. Nucleic Acids Res 43:D213–D221CrossRefPubMedGoogle Scholar
  50. Mizukami Y (2001) A matter of size: developmental control of organ size in plants. Curr Opin Plant Biol 4(6):533–539CrossRefPubMedGoogle Scholar
  51. Mun JH, Yu HJ, Lee HS, Kwon YM, Lee JS, Lee I, Kim SG (2000) Two closely related cDNAs encoding actin-depolymerizing factors of petunia are mainly expressed in vegetative tissues. Gene 257(2):167–176CrossRefPubMedGoogle Scholar
  52. Munoz-Bertomeu J, Cascales-Minana B, Alaiz M, Segura J, Ros R (2010) A critical role of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase in the control of plant metabolism and development. Plant Signal Behav 5(1):67–69CrossRefPubMedPubMedCentralGoogle Scholar
  53. Nicholls C, Li H, Liu JP (2012) GAPDH: a common enzyme with uncommon functions. Clin Exp Pharmacol Physiol 39(8):674–679CrossRefPubMedGoogle Scholar
  54. Ohto MA, Fischer RL, Goldberg RB, Nakamura K, Harada JJ (2005) Control of seed mass by APETALA2. Proc Natl Acad Sci USA 102(8):3123–3128CrossRefPubMedPubMedCentralGoogle Scholar
  55. Ohto MA, Floyd SK, Fischer RL, Goldberg RB, Harada JJ (2009) Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis. Sex Plant Reprod 22:277–289CrossRefPubMedPubMedCentralGoogle Scholar
  56. Ouellet F, Carpentier E, Cope MJ, Monroy AF, Sarhan F (2001) Regulation of a wheat actin-depolymerizing factor during cold acclimation. Plant Physiol 125(1):360–368CrossRefPubMedPubMedCentralGoogle Scholar
  57. Porter K, Shimono M, Tian M, Day B (2012) Arabidopsis actin-depolymerizing factor 4 links pathogen perception, defense activation and transcription to cytoskeletal dynamics. PLoS Pathog 8(11):e1003006CrossRefPubMedPubMedCentralGoogle Scholar
  58. Prelich G (2012) Gene overexpression: uses, mechanisms, and interpretation. Genetics 190:841–854CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ren H, Xiang Y (2007) The function of actin-binding proteins in pollen tube growth. Protoplasma 230(3–4):171–182CrossRefPubMedGoogle Scholar
  60. Rius SP, Casati P, Iglesias AA, Gomez-Casati DF (2008) Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. Plant Physiol 148(3):1655–1667CrossRefPubMedPubMedCentralGoogle Scholar
  61. Rozycka M, Khan S, Lopez I, Greenland AJ, Hussey PJ (1995) A Zea mays pollen cDNA encoding a putative actin-depolymerizing factor. Plant Physiol 107(3):1011–1012CrossRefPubMedPubMedCentralGoogle Scholar
  62. Ruzicka DR, Kandasamy MK, McKinney EC, Burgos-Rivera B, Meagher RB (2007) The ancient subclasses of Arabidopsis Actin Depolymerizing Factor genes exhibit novel and differential expression. Plant J 52(3):460–472CrossRefPubMedGoogle Scholar
  63. Schmidt RJ, Ketudat M, Aukerman MJ, Hoschek G (1992) Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes. Plant Cell 4(6):689–700CrossRefPubMedPubMedCentralGoogle Scholar
  64. Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ (2006) The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133:251–261CrossRefPubMedGoogle Scholar
  65. Smertenko AP, Jiang CJ, Simmons NJ, Weeds AG, Davies DR, Hussey PJ (1998) Ser6 in the maize actin-depolymerizing factor, ZmADF3, is phosphorylated by a calcium-stimulated protein kinase and is essential for the control of functional activity. Plant J 14(2):187–193CrossRefPubMedGoogle Scholar
  66. Smith LG (2003) Cytoskeletal control of plant cell shape: getting the fine points. Curr Opin Plant Biol 6(1):63–73CrossRefPubMedGoogle Scholar
  67. Sprinzak E, Sattath S, Margalit H (2003) How reliable are experimental protein-protein interaction data? J Mol Biol 327(5):919–923CrossRefPubMedGoogle Scholar
  68. Staiger CJ (2000) Signaling to the actin cytoskeleton in plants. Annu Rev Plant Physiol Plant Mol Biol 51:257–288CrossRefPubMedGoogle Scholar
  69. Su XH, Zhou P, Wang R, Luo ZP, Xia ZL (2015) Overexpression of the maize psbA gene enhances sulfur dioxide tolerance in transgenic tobacco. Plant Cell Tissue Organ Cult 120:303–311CrossRefGoogle Scholar
  70. Sun HQ, Kwiatkowska K, Yin HL (1995) Actin monomer binding proteins. Curr Opin Cell Biol 7(1):102–110CrossRefPubMedGoogle Scholar
  71. Sundaresan V (2005) Control of seed size in plants. Proc Natl Acad Sci USA 102(50):17887–17888CrossRefPubMedPubMedCentralGoogle Scholar
  72. Takaiwa F, Oono K, Wing D, Kato A (1991) Sequence of three members and expression of a new major subfamily of glutelin genes from rice. Plant Mol Biol 17(4):875–885CrossRefPubMedGoogle Scholar
  73. Tiezzi A (1991) The pollen tube cytoskeleton. Electron Microsc Rev 4(2):205–219CrossRefPubMedGoogle Scholar
  74. Volkmann D, Baluska F (1999) Actin cytoskeleton in plants: from transport networks to signaling networks. Microsc Res Tech 47(2):135–154CrossRefPubMedGoogle Scholar
  75. Wang QL (2015) Functional research of ZmREP2 and ZmArf2 and characterization of dynamic quantitative proteomics of pericarp and endoperm in two maize inbred lines. Doctoral dissertation, Henan Agricultural UniversityGoogle Scholar
  76. Wang X, Li X, Deng X, Han H, Shi W, Li Y (2007) A protein extraction method compatible with proteomic analysis for the euhalophyte Salicornia europaea. Electrophoresis 28(21):3976–3987CrossRefPubMedGoogle Scholar
  77. Wang HY, Wang J, Gao P, Jiao GL, Zhao PM, Li Y, Wang GL, Xia GX (2009) Down-regulation of GhADF1 gene expression affects cotton fibre properties. Plant Biotechnol J 7(1):13–23CrossRefPubMedGoogle Scholar
  78. Wang A, Garcia D, Zhang H, Feng K, Chaudhury A, Berger F, Peacock WJ, Dennis ES, Luo M (2010) The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis. Plant J 63(4):670–679CrossRefPubMedGoogle Scholar
  79. Wang WQ, Liu SJ, Song SQ, Moller IM (2015) Proteomics of seed development, desiccation tolerance, germination and vigor. Plant Physiol Biochem 86:1–15CrossRefPubMedGoogle Scholar
  80. Wu CY, Suzuki A, Washida H, Takaiwa F (1998) The GCN4 motif in a rice glutelin gene is essential for endosperm-specific gene expression and is activated by opaque-2 in transgenic rice plants. Plant J 14(6):673–683CrossRefPubMedGoogle Scholar
  81. Xia T, Li N, Dumenil J, Li J, Kamenski A, Bevan MW, Gao F, Li Y (2013) The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. Plant Cell 25(9):3347–3359CrossRefPubMedPubMedCentralGoogle Scholar
  82. Xu SB, Li T, Deng ZY, Chong K, Xue Y, Wang T (2008) Dynamic proteomic analysis reveals a switch between central carbon metabolism and alcoholic fermentation in rice filling grains. Plant Physiol 148:908–925CrossRefPubMedPubMedCentralGoogle Scholar
  83. Zhang C, Guo L, Wang X, Zhang H, Shi H, Xu W, Li X (2007) Molecular characterization of four ADF genes differentially expressed in cotton. J Genet Genomics 34(4):347–354CrossRefPubMedGoogle Scholar
  84. Zhang XH, Rao XL, Shi HT, Li RJ, Lu YT (2011) Overexpression of a cytosolic glyceraldehyde-3-phosphate dehydrogenase gene OsGAPC3 confers salt tolerance in rice. Plant Cell Tissue Organ Cult 10:1–11CrossRefGoogle Scholar
  85. Zheng Y, Xie Y, Jiang Y, Qu X, Huang S (2013) Arabidopsis actin-depolymerizing factor7 severs actin filaments and regulates actin cable turnover to promote normal pollen tube growth. Plant Cell 25(9):3405–3423CrossRefPubMedPubMedCentralGoogle Scholar
  86. Zhou Y, Zhang X, Kang X, Zhao X, Zhang X, Ni M (2009) Short hypocotyl under blue 1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development. Plant Cell 21(1):106–117CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Dahe Qiao
    • 1
  • Yongbin Dong
    • 1
  • Long Zhang
    • 1
  • Qiang Zhou
    • 1
  • Chunhui Hu
    • 1
  • Yangliu Ren
    • 1
  • Yuling Li
    • 1
    Email author
  1. 1.National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina

Personalised recommendations