Advertisement

Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 124, Issue 3, pp 621–633 | Cite as

Characterization of apple NADPH oxidase genes and their expression associated with oxidative stress in shoot culture in vitro

  • Darius Cepauskas
  • Inga Miliute
  • Grazina Staniene
  • Dalia Gelvonauskiene
  • Vidmantas Stanys
  • Algirdas J. Jesaitis
  • Danas BaniulisEmail author
Original Article

Abstract

Genes encoding Rboh (respiratory burst oxidase homolog) have been described in a variety of plant species. Transcriptional regulation of rboh genes has been shown during plant response to stress or phytohormone treatment. In vitro conditions often induce plant stress that leads to slow plant growth, early senescence, or even recalcitrance to in vitro growth. Production of reactive oxygen species (ROS) is an important manifestation of plant environmental stress. Expression of rboh orthologs in plant tissues grown under in vitro conditions and their role in response to abiotic stress is not fully understood. Therefore the aim of this study was to identify rboh homologues in apple (Mdrboh) and to characterize their expression during the senescence of apple shoot culture in vitro. Similarity searches using Arabidopsis Rboh (AtRboh) protein sequences revealed nine homologous rboh genes in the apple genome. Phylogenetic analysis using conservative N-terminal half region sequences of the apple, Arabidopsis, pear, peach and wild strawberry Rboh proteins revealed four groups of related sequences that were linked to AtRboh D, E, F and H. A homologue with unique sequence was annotated as Rboh K in plants of the Rosaceae family. Expression of MdrbohD13 and F was detected in apple leaves, in vitro cultures of shoots and cell suspension, and MdrbohE2 and H12 varied among the tissues. The MdrbohD12 and F genes were differentially expressed during transfer, growth and senescence stages of apple in vitro shoot culture having varying levels of oxidative stress damage, suggesting transcriptional regulation of the Mdrboh genes in the apple shoot culture, and a potential for distinctive functions of the three Rboh D orthologs.

Keywords

Malus × domestica Rboh Oxidative stress In vitro propagation 

Abbreviations

cv.

Cultivar

FW

Fresh weight

MDA

Malondialdehyde

Rboh

Respiratory burst oxidase homolog

ROS

Reactive oxygen species

O2·−

Superoxide

H2O2

Hydrogen peroxide

SEM

Standard error of the mean

TBARS

Thiobarbituric acid reactive substances

Notes

Acknowledgments

This research was funded by the Lithuanian Research Council Grant No. MIP-47/2013.

Authors’ contributions

Conceived and designed the experiments: AJJ, DB, VS. Performed the experiments: DC, DG, GS, IM. Analyzed the data: DB, DC, IM. Wrote the paper: AJJ, DB, DC, IM, VS. All authors read and approved the final manuscript.

Supplementary material

11240_2015_920_MOESM1_ESM.pdf (1 mb)
Supplementary material 1 (PDF 1056 kb)

References

  1. Aldwinckle H, Malnoy M (2009) Plant regeneration and transformation in the Rosaceae. In: Nageswara-Rao M, Soneji JR (eds) Transgenic plant journal 3 (Special Issue 1). Global Science Books, Isleworth, pp 1–39Google Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi: 10.1016/S0022-2836(05)80360-2 CrossRefPubMedGoogle Scholar
  3. Amicucci E, Gaschler K, Ward JM (1999) NADPH oxidase genes from tomato (Lycopersicon esculentum) and curly-leaf pondweed (Potamogeton crispus). Plant Biol 1:524–528. doi: 10.1111/j.1438-8677.1999.tb00778.x CrossRefGoogle Scholar
  4. Andriunas FA, Zhang HM, Xia X, Offler CE, McCurdy DW, Patrick JW (2012) Reactive oxygen species form part of a regulatory pathway initiating trans-differentiation of epidermal transfer cells in Vicia faba cotyledons. J Exp Bot 63:3617–3629. doi: 10.1093/jxb/ers029 PubMedCentralCrossRefPubMedGoogle Scholar
  5. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. doi: 10.1146/annurev.arplant.55.031903.141701 CrossRefPubMedGoogle Scholar
  6. Bairu MW, Kane ME (2011) Physiological and developmental problems encountered by in vitro cultured plants. Plant Growth Regul 62:101–103. doi: 10.1007/s10725-011-9565-2 CrossRefGoogle Scholar
  7. Balen B, Tkalec M, Pavokovic D, Pevalek-Kozlina B, Krsnik-Rasol M (2009) Growth conditions in in vitro culture can induce oxidative stress in Mammillaria gracilis tissues. J Plant Growth Regul 28:36–45. doi: 10.1007/s00344-008-9072-5 CrossRefGoogle Scholar
  8. Benson EE (2000a) Special symposium: in vitro plant recalcitrance do free radicals have a role in plant tissue culture recalcitrance? In Vitro Cell Dev Biol Plant 36:163–170. doi: 10.1007/s11627-000-0032-4 CrossRefGoogle Scholar
  9. Benson EE (2000b) Do free radicals have a role in plant tissue culture recalcitrance? In Vitro Cell Dev Biol Plant 36:163–170. doi: 10.1007/s11627-000-0032-4 CrossRefGoogle Scholar
  10. Blomster T, Salojarvi J, Sipari N, Brosche M, Ahlfors R, Keinanen M, Overmyer K, Kangasjarvi J (2011) Apoplastic reactive oxygen species transiently decrease auxin signaling and cause stress-induced morphogenic response in Arabidopsis. Plant Physiol 157:1866–1883. doi: 10.1104/pp.111.181883 PubMedCentralCrossRefPubMedGoogle Scholar
  11. Bonasera JM, Kim JF, Beer SV (2006) PR genes of apple: identification and expression in response to elicitors and inoculation with Erwinia amylovora. BMC Plant Biol 6:23. doi: 10.1186/1471-2229-6-23 PubMedCentralCrossRefPubMedGoogle Scholar
  12. Cassells A, Curry R (2001) Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers. Plant Cell Tissue Organ 64:145–157. doi: 10.1023/A:1010692104861 CrossRefGoogle Scholar
  13. Chagne D, Crowhurst RN, Pindo M et al (2014) The draft genome sequence of European pear (Pyrus communis L. ‘Bartlett’). PLoS ONE 9:e92644. doi: 10.1371/journal.pone.0092644 PubMedCentralCrossRefPubMedGoogle Scholar
  14. Chatzissavvidis C, Veneti G, Papadakis I, Therios I (2008) Effect of NaCl and CaCl2 on the antioxidant mechanism of leaves and stems of the rootstock CAB-6P (Prunus cerasus L.) under in vitro conditions. Plant Cell Tissue Organ 95:37–45. doi: 10.1007/s11240-008-9411-z CrossRefGoogle Scholar
  15. Cheng C, Xu X, Gao M, Li J, Guo C, Song J, Wang X (2013) Genome-wide analysis of respiratory burst oxidase homologs in grape (Vitis vinifera L.). Int J Mol Sci 14:24169–24186. doi: 10.3390/ijms141224169 PubMedCentralCrossRefPubMedGoogle Scholar
  16. Czynczyk A, Bielicki P, Bartosiewicz B (2008) Evaluation of the effect of P 14 rootstock propagated in vitro and in stoolbeds on the growth and yielding of three apple cultivars. J Fruit Ornam Plant Res 16:25–30Google Scholar
  17. Debergh PC, Read PE (1991) Micropropagation. In: Debergh PC, Zimmerman RH (eds) Micropropagation: Technology and Application. Kluwer Academic, Dordrecht, pp 1–13CrossRefGoogle Scholar
  18. Defilippi BG, Kader AA, Dandekar AM (2005) Apple aroma: alcohol acyltransferase, a rate limiting step for ester biosynthesis, is regulated by ethylene. Plant Sci 168:1199–1210. doi: 10.1016/j.plantsci.2004.12.018 CrossRefGoogle Scholar
  19. Denness L, McKenna JF, Segonzac C, Wormit A, Madhou P, Bennett M, Mansfield J, Zipfel C, Hamann T (2011) Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol 156:1364–1374. doi: 10.1104/pp.111.175737 PubMedCentralCrossRefPubMedGoogle Scholar
  20. Dobranszki J, da Silva JA (2010) Micropropagation of apple—a review. Biotechnol Adv 28:462–488. doi: 10.1016/j.biotechadv.2010.02.008 CrossRefPubMedGoogle Scholar
  21. Doke N (1983) Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal cell wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiol Plant Pathol 23:345–357. doi: 10.1016/0048-4059(83)90020-6 CrossRefGoogle Scholar
  22. Doke N (1997) The oxidative burst: roles in signal transduction and plant stress. In: Oxidative stress and the molecular biology of antioxidant defenses, Cold Spring Harbor Laboratory Press, Plainview, pp 785–813Google Scholar
  23. Erturk U, Sivritepe N, Yerlikaya C, Bor M, Ozdemir F, Turkan I (2007) Responses of the cherry rootstock to salinity in vitro. Biol Plant 51:597–600. doi: 10.1007/s10535-007-0132-7 CrossRefGoogle Scholar
  24. Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446. doi: 10.1038/nature01485 CrossRefPubMedGoogle Scholar
  25. Franck T, Kevers C, Gaspar T, Dommes J, Deby C, Greimers R, Serteyn D, Deby-Dupont G (2004) Hyperhydricity of Prunus avium shoots cultured on gelrite: a controlled stress response. Plant Physiol Biochem 42:519–527. doi: 10.1016/j.plaphy.2004.05.003 CrossRefPubMedGoogle Scholar
  26. Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38:W695–W699. doi: 10.1093/nar/gkq313 PubMedCentralCrossRefPubMedGoogle Scholar
  27. Groom QJ, Torres MA, Fordham-Skelton AP, Hammond-Kosack KE, Robinson NJ, Jones JD (1996) rbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant J 10:515–522. doi: 10.1046/j.1365-313X.1996.10030515.x CrossRefPubMedGoogle Scholar
  28. Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2014) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. doi: 10.1093/bioinformatics/btu817 Google Scholar
  29. Ivanchenko MG, den Os D, Monshausen GB, Dubrovsky JG, Bednarova A, Krishnan N (2013) Auxin increases the hydrogen peroxide (H2O2) concentration in tomato (Solanum lycopersicum) root tips while inhibiting root growth. Ann Bot 112:1107–1116. doi: 10.1093/aob/mct181 PubMedCentralCrossRefPubMedGoogle Scholar
  30. Jagendorf AT, Takabe T (2001) Inducers of glycinebetaine synthesis in barley. Plant Physiol 127:1827–1835. doi: 10.1104/pp.010392 PubMedCentralCrossRefPubMedGoogle Scholar
  31. Jakubowicz M, Galganska H, Nowak W, Sadowski J (2010) Exogenously induced expression of ethylene biosynthesis, ethylene perception, phospholipase D, and Rboh-oxidase genes in broccoli seedlings. J Exp Bot 61:3475–3491. doi: 10.1093/jxb/erq177 PubMedCentralCrossRefPubMedGoogle Scholar
  32. Jesaitis AJ, Heners PR, Briggs WR, Hertel R (1977) Characterization of a membrane fraction containing a b-type cytochrome. Plant Physiol 59:941–947. doi: 10.1104/pp.59.5.941 PubMedCentralCrossRefPubMedGoogle Scholar
  33. Jung S, Ficklin SP, Lee T et al (2014) The genome database for Rosaceae (GDR): year 10 update. Nucleic Acids Res 42:D1237–D1244. doi: 10.1093/nar/gkt1012 PubMedCentralCrossRefPubMedGoogle Scholar
  34. Kaur G, Sharma A, Guruprasad K, Pati PK (2014) Versatile roles of plant NADPH oxidases and emerging concepts. Biotechnol Adv 32:551–563. doi: 10.1016/j.biotechadv.2014.02.002 CrossRefPubMedGoogle Scholar
  35. Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C (1998) A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10:255–266. doi: 10.1105/tpc.10.2.255 PubMedCentralPubMedGoogle Scholar
  36. Kumar GN, Iyer S, Knowles NR (2007) Strboh A homologue of NADPH oxidase regulates wound-induced oxidative burst and facilitates wound-healing in potato tubers. Planta 227:25–36. doi: 10.1007/s00425-007-0589-9 CrossRefPubMedGoogle Scholar
  37. Kurkcuoglu S, Degenhardt J, Lensing J, Al-Masri AN, Gau AE (2007) Identification of differentially expressed genes in Malus domestica after application of the non-pathogenic bacterium Pseudomonas fluorescens Bk3 to the phyllosphere. J Exp Bot 58:733–741. doi: 10.1093/jxb/erl249 CrossRefPubMedGoogle Scholar
  38. Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633. doi: 10.1093/emboj/cdg277 PubMedCentralCrossRefPubMedGoogle Scholar
  39. Lightfoot DJ, Boettcher A, Little A, Shirley N, Able AJ (2008) Identification and characterisation of barley (Hordeum vulgare) respiratory burst oxidase homologue family members. Funct Plant Biol 35:347–359. doi: 10.1071/FP08109 CrossRefGoogle Scholar
  40. Lin F, Ding H, Wang J, Zhang H, Zhang A, Zhang Y, Tan M, Dong W, Jiang M (2009) Positive feedback regulation of maize NADPH oxidase by mitogen-activated protein kinase cascade in abscisic acid signalling. J Exp Bot 60:3221–3238. doi: 10.1093/jxb/erp157 PubMedCentralCrossRefPubMedGoogle Scholar
  41. Lombardi L, Sebastiani L, Vitagliano C (2003) Physiological, biochemical, and molecular effects of in vitro induced iron deficiency in peach rootstock Mr.S 2/5. J Plant Nutr 26:2149–2163. doi: 10.1081/PLN-120024271 CrossRefGoogle Scholar
  42. Macpherson N, Takeda S, Shang Z, Dark A, Mortimer JC, Brownlee C, Dolan L, Davies JM (2008) NADPH oxidase involvement in cellular integrity. Planta 227:1415–1418. doi: 10.1007/s00425-008-0716-2 CrossRefPubMedGoogle Scholar
  43. Marino D, Andrio E, Danchin EG, Oger E, Gucciardo S, Lambert A, Puppo A, Pauly N (2011) A Medicago truncatula NADPH oxidase is involved in symbiotic nodule functioning. New Phytol 189:580–592. doi: 10.1111/j.1469-8137.2010.03509.x PubMedCentralCrossRefPubMedGoogle Scholar
  44. Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17:9–15. doi: 10.1016/j.tplants.2011.10.001 CrossRefPubMedGoogle Scholar
  45. Maruta T, Inoue T, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S (2011) Arabidopsis NADPH oxidases, AtrbohD and AtrbohF, are essential for jasmonic acid-induced expression of genes regulated by MYC2 transcription factor. Plant Sci 180:655–660. doi: 10.1016/j.plantsci.2011.01.014 CrossRefPubMedGoogle Scholar
  46. Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2:ra45. doi: 10.1126/scisignal.2000448 PubMedGoogle Scholar
  47. Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van BF (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309. doi: 10.1016/j.tplants.2011.03.007 CrossRefPubMedGoogle Scholar
  48. Molassiotis AN, Diamantidis GC, Therios IN, Tsirakoglou V, Dimassi KN (2005) Oxidative stress, antioxidant activity and Fe(III)-chelate reductase activity of five Prunus rootstocks explants in response to Fe deficiency. Plant Growth Regul 46:69–78. doi: 10.1007/s10725-005-6396-z CrossRefGoogle Scholar
  49. Molassiotis AN, Sotiropoulos S, Tanou G, Kofidis G, Diamantidis G, Therios I (2006) Antioxidant and anatomical responses in shoot culture of the apple rootstock MM 106 treated with NaCl, KCl, mannitol or sorbitol. Biol Plant 50:61–68. doi: 10.1007/s10535-005-0075-9 CrossRefGoogle Scholar
  50. Montiel J, Nava N, Cardenas L, Sanchez-Lopez R, Arthikala MK, Santana O, Sanchez F, Quinto C (2012) A Phaseolus vulgaris NADPH oxidase gene is required for root infection by Rhizobia. Plant Cell Physiol 53:1751–1767. doi: 10.1093/pcp/pcs120 CrossRefPubMedGoogle Scholar
  51. Morel J, Fromentin J, Blein JP, Simon-Plas F, Elmayan T (2004) Rac regulation of NtrbohD, the oxidase responsible for the oxidative burst in elicited tobacco cell. Plant J 37:282–293. doi: 10.1046/j.1365-313X.2003.01957.x CrossRefPubMedGoogle Scholar
  52. Muller K, Carstens AC, Linkies A, Torres MA, Leubner-Metzger G (2009) The NADPH-oxidase AtrbohB plays a role in Arabidopsis seed after-ripening. New Phytol 184:885–897. doi: 10.1111/j.1469-8137.2009.03005.x CrossRefPubMedGoogle Scholar
  53. Muller K, Linkies A, Leubner-Metzger G, Kermode AR (2012) Role of a respiratory burst oxidase of Lepidium sativum (cress) seedlings in root development and auxin signalling. J Exp Bot 63:6325–6334. doi: 10.1093/jxb/ers284 PubMedCentralCrossRefPubMedGoogle Scholar
  54. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  55. Peer WA, Cheng Y, Murphy AS (2013) Evidence of oxidative attenuation of auxin signalling. J Exp Bot 64:2629–2639. doi: 10.1093/jxb/ert152 CrossRefPubMedGoogle Scholar
  56. Potocky M, Jones MA, Bezvoda R, Smirnoff N, Zarsky V (2007) Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol 174:742–751. doi: 10.1111/j.1469-8137.2007.02042.x CrossRefPubMedGoogle Scholar
  57. Proels RK, Oberhollenzer K, Pathuri IP, Hensel G, Kumlehn J, Huckelhoven R (2010) RBOHF2 of barley is required for normal development of penetration resistance to the parasitic fungus Blumeria graminis f. sp. hordei. Mol Plant Microbe Interact 23:1143–1150. doi: 10.1094/MPMI-23-9-1143 CrossRefPubMedGoogle Scholar
  58. Remans T, Opdenakker K, Smeets K, Mathijsen D, Vangrosveld J, Cuypers A (2010) Metal-specific and NADPH oxidase dependent changes in lipoxygenase and NADPH oxidase gene expression in Arabidopsis thaliana exposed to cadmium or excess copper. Funct Plant Biol 37:532–544. doi: 10.1071/FP09194 CrossRefGoogle Scholar
  59. Rojas-Martinez L, Visser RGF, De Klerk G-J (2010) The hyperhydricity syndrome: waterlogging of plant tissues as a major cause. Propag Ornam Plants 10:169–175Google Scholar
  60. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  61. Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340. doi: 10.1104/pp.106.078089 PubMedCentralCrossRefPubMedGoogle Scholar
  62. Sagi M, Davydov O, Orazova S, Yesbergenova Z, Ophir R, Stratmann JW, Fluhr R (2004) Plant respiratory burst oxidase homologs impinge on wound responsiveness and development in Lycopersicon esculentum. Plant Cell 16:616–628. doi: 10.1105/tpc.019398 PubMedCentralCrossRefPubMedGoogle Scholar
  63. Saher S, Piqueras A, Hellin E, Olmos E (2004) Hyperhydricity in micropropagated carnation shoots: the role of oxidative stress. Physiol Plant 120:152–161. doi: 10.1111/j.0031-9317.2004.0219.x CrossRefPubMedGoogle Scholar
  64. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  65. Schopfer P, Liszkay A (2006) Plasma membrane-generated reactive oxygen intermediates and their role in cell growth of plants. BioFactors 28:73–81CrossRefPubMedGoogle Scholar
  66. Sen A (2012) Oxidative stress studies in plant tissue culture. In: El-Missiry MA (ed) Antioxidant enzyme. InTech, RijekaGoogle Scholar
  67. Shulaev V, Korban SS, Sosinski B et al (2008) Multiple models for Rosaceae genomics. Plant Physiol 147:985–1003. doi: 10.1104/pp.107.115618 PubMedCentralCrossRefPubMedGoogle Scholar
  68. Shulaev V, Sargent DJ, Crowhurst RN et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116. doi: 10.1038/ng.740 PubMedCentralCrossRefPubMedGoogle Scholar
  69. Si Y, Dane F, Rashotte A, Kang K, Singh NK (2010) Cloning and expression analysis of the Ccrboh gene encoding respiratory burst oxidase in Citrullus colocynthis and grafting onto Citrullus lanatus (watermelon). J Exp Bot 61:1635–1642. doi: 10.1093/jxb/erq031 PubMedCentralCrossRefPubMedGoogle Scholar
  70. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. doi: 10.1038/msb.2011.75 PubMedCentralCrossRefPubMedGoogle Scholar
  71. Simon-Plas F, Elmayan T, Blein JP (2002) The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells. Plant J 31:137–147. doi: 10.1046/j.1365-313X.2002.01342.x CrossRefPubMedGoogle Scholar
  72. Sivritepe N, Erturk U, Yerlikaya C, Turkan I, Bor M, Ozdemir F (2008) Response of the cherry rootstock to water stress induced in vitro. Biol Plant 52:573–576. doi: 10.1007/s10535-008-0114-4 CrossRefGoogle Scholar
  73. Solovyev V, Kosarev P, Seledsov I, Vorobyev D (2006) Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol 7(Suppl 1):S10–S12. doi: 10.1186/gb-2006-7-s1-s10 PubMedCentralCrossRefPubMedGoogle Scholar
  74. Sotiropoulos TE (2007) Effect of NaCl and CaCl2 on growth and contents of minerals, chlorophyll, proline and sugars in the apple rootstock M4 cultured in vitro. Biol Plant 51:177–180. doi: 10.1007/s10535-007-0035-7 CrossRefGoogle Scholar
  75. Sotiropoulos TE, Molassiotis AN, Almaliotis D, Mouhtaridou G, Dimassi KN, Therios I, Diamantidis G (2006) Growth, nutritional status, chlorophyll content, and antioxidant responses of the apple rootstock MM111 shoots cultured under high boron concentrations in vitro. J Plant Nutr 29:575–583. doi: 10.1080/01904160500526956 CrossRefGoogle Scholar
  76. Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699. doi: 10.1016/j.pbi.2011.07.014 CrossRefPubMedGoogle Scholar
  77. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 PubMedCentralCrossRefPubMedGoogle Scholar
  78. Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403. doi: 10.1016/j.pbi.2005.05.014 CrossRefPubMedGoogle Scholar
  79. Torres MA, Onouchi H, Hamada S, Machida C, Hammond-Kosack KE, Jones JD (1998) Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). Plant J 14:365–370. doi: 10.1046/j.1365-313X.1998.00136.x CrossRefPubMedGoogle Scholar
  80. Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839. doi: 10.1038/ng.654 CrossRefPubMedGoogle Scholar
  81. Verde I, Abbott AG, Scalabrin S et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494. doi: 10.1038/ng.2586 CrossRefPubMedGoogle Scholar
  82. Wang W, Zheng H, Fan C, Li J, Shi J, Cai Z, Zhang G, Liu D, Zhang J, Vang S, Lu Z, Wong GK, Long M, Wang J (2006) High rate of chimeric gene origination by retroposition in plant genomes. Plant Cell 18:1791–1802. doi: 10.1105/tpc.106.041905 PubMedCentralCrossRefPubMedGoogle Scholar
  83. Wang GF, Li WQ, Li WY, Wu GL, Zhou CY, Chen KM (2013) Characterization of rice NADPH oxidase genes and their expression under various environmental conditions. Int J Mol Sci 14:9440–9458. doi: 10.3390/ijms14059440 PubMedCentralCrossRefPubMedGoogle Scholar
  84. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. doi: 10.1093/bioinformatics/btp033 PubMedCentralPubMedGoogle Scholar
  85. Wohlgemuth H, Mittelstrass K, Kschieschan S, Bender J, Weigel H-J, Overmyer K, Kangasjarvi J, Sandermann H, Langebartels C (2002) Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. Plant Cell Environm 25:717–726. doi: 10.1046/j.1365-3040.2002.00859.x CrossRefGoogle Scholar
  86. Yamamizo C, Kuchimura K, Kobayashi A, Katou S, Kawakita K, Jones JD, Doke N, Yoshioka H (2006) Rewiring mitogen-activated protein kinase cascade by positive feedback confers potato blight resistance. Plant Physiol 140:681–692. doi: 10.1104/pp.105.074906 PubMedCentralCrossRefPubMedGoogle Scholar
  87. Yoshioka H, Sugie K, Park HJ, Maeda H, Tsuda N, Kawakita K, Doke N (2001) Induction of plant gp91phox homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato. Mol Plant Microbe Interact 14:725–736. doi: 10.1094/MPMI.2001.14.6.725 CrossRefPubMedGoogle Scholar
  88. Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JD, Doke N (2003) Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15:706–718. doi: 10.1105/tpc.008680 PubMedCentralCrossRefPubMedGoogle Scholar
  89. Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12:1047–1064. doi: 10.1089/cmb.2005.12.1047 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Darius Cepauskas
    • 1
  • Inga Miliute
    • 1
  • Grazina Staniene
    • 1
  • Dalia Gelvonauskiene
    • 1
  • Vidmantas Stanys
    • 1
  • Algirdas J. Jesaitis
    • 2
  • Danas Baniulis
    • 1
    Email author
  1. 1.Institute of HorticultureLithuanian Research Centre for Agriculture and ForestryBabtai, KaunasLithuania
  2. 2.Department of MicrobiologyMontana State UniversityBozemanUSA

Personalised recommendations