Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 123, Issue 3, pp 535–546 | Cite as

Ectopic expression of the apple Md-miR172e gene alters flowering time and floral organ identity in Arabidopsis

  • Qiang Zhao
  • Chao Sun
  • Dan-Dan Liu
  • Yu-Jin Hao
  • Chun-Xiang YouEmail author
Original Article


The miRNA miR172 is involved in the regulation of flowering time and floral organ development by specifically restricting the transcripts of target gene APETELA2 (AP2) transcription factors. In our study, Md-miR172e and its target genes, MdAP2 and MdAP2-1 to MdAP2-7, were isolated from the apple cultivar Royal Gala (Malus × domestica). Phylogenetic tree analysis revealed that eight MdAP2 genes were similar to the AtAP2 subfamily and were putative targets of miR172. qRT-PCR and western blotting analyses indicated Md-miR172e regulation of the expression of the target gene MdAP2 at the translation level. Next, an over-expression construct 35S::Md-miR172e was generated and transformed into Arabidopsis. qRT-PCR showed that Md-miR72e expression and mature miR172e accumulation increased, and transgenic plants exhibited early flowering (20–30 days early in flowering) under long days and floral defects compared with wild-type. Taken together, these results suggest that miR172 and its target AP2-like genes are involved in flower developmental processes, particularly with regards to flowering time and floral organ development, and miR172 mediates a conserved regulatory pathway in apple and Arabidopsis.


Malus domestica miR172 MdAP2s Ectopic expression Arabidopsis 



Auxin response factor




Squamosa promoter binding protein-like protein


Reverse transcriptase


Expressed sequence tag


Cauliflower mosaic virus


Wild type










Quantificational real-time polymerase chain reaction



This work was supported by NSFC (31171946), PCSIRT (IRT1155) and 948 Project from Ministry of Agriculture of China (2011-G21).


  1. Amasino RM, Michaels SD (2010) The timing of flowering. Plant Physiol 154:516–520PubMedCentralCrossRefPubMedGoogle Scholar
  2. Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15(11):2730–2741PubMedCentralCrossRefPubMedGoogle Scholar
  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis mechanism, and function. Cell 116:281–297CrossRefPubMedGoogle Scholar
  4. Brown RH, Bregitzer P (2011) A insertional mutant of a barley gene results in indeterminate spikelet development. Crop Sci 51(4):1664–1672CrossRefGoogle Scholar
  5. Chellappan P, Xia J, Zhou X, Gao S, Zhang X, Coutino G, Vazquez F, Zhang W, Jin H (2010) siRNAs from miRNA sites mediate DNA methylation of target genes. Nucleic Acids Res 38:6883–6894PubMedCentralCrossRefPubMedGoogle Scholar
  6. Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303(5666):2022–2025CrossRefPubMedGoogle Scholar
  7. Chen XB, Zhang ZL, Liu DM, Zhang K, Li AL, Mao L (2010) SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development. J Integr Plant Biol 52:946–951CrossRefPubMedGoogle Scholar
  8. Chuck G, Meeley R, Irish E, Sakai H, Hake S (2007) The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat Genet 39(12):1517–1521CrossRefPubMedGoogle Scholar
  9. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743Google Scholar
  10. Feng XM, You CX, Qiao Y, Mao K, Hao YJ (2010) Ectopic overexpression of Arabidopsis AtmiR393a gene changes auxin sensitivity and enhances salt resistance in tobacco. Acta Physiol Plant 32:997–1003Google Scholar
  11. Gleave AP, Ampomah-Dwamena CA, Berthold S, Dejnoprat S, Karunairetnam S, Nain B et al (2008) Identification and characterization of primary microRNAs from apple (Malus domestica cv. Royal Gala). Tree Genet Genomes 4:343–358CrossRefGoogle Scholar
  12. Gutierrez L, Bussell JD, Pacurar DI, Schwambach J, Pacurar M, Bellini C (2009) Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 21(10):3119–3132PubMedCentralCrossRefPubMedGoogle Scholar
  13. Irish VF (2010) The flowering of Arabidopsis flower development. Plant J 61(6):1014–1028CrossRefPubMedGoogle Scholar
  14. Jiao YQ, Wang YH, Xue DW, Wang J, Yan MX, Liu GF et al (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544CrossRefPubMedGoogle Scholar
  15. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53CrossRefPubMedGoogle Scholar
  16. Jung JH, Seo YH, Seo PJ, Reyes JL, Yun J, Chua NH, Park CM (2007) The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19(9):2736–2748PubMedCentralCrossRefPubMedGoogle Scholar
  17. Jung JH, Lee S, Yun J, Lee M, Park CM (2014) The miR172 target TOE3 represses AGAMOUS expression during Arabidopsis floral patterning. Plant Sci 215:29–38CrossRefPubMedGoogle Scholar
  18. Kawasaki H, Taira K (2003) Short hairpin type of dsRNAs that are controlled by tRNAVal promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res 31(2):700–707PubMedCentralCrossRefPubMedGoogle Scholar
  19. Lauter N, Kampani A, Carlson S, Goebel M, Moose SP (2005) microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc Natl Acad Sci USA 102(26):9412–9417PubMedCentralCrossRefPubMedGoogle Scholar
  20. Luo Y, Guo Z, Li L (2013) Evolutionary conservation of microRNA regulatory programs in plant flower development. Dev Biol 380(2):133–144CrossRefPubMedGoogle Scholar
  21. Martin A, Adam H, Díaz-Mendoza M, Żurczak M, González-Schain ND, Suárez-López P (2009) Graft-transmissible induction of potato tuberization by the microRNA miR172.  Development 136:2873–2881Google Scholar
  22. Mathieu J, Yant LJ, Mürdter F, Küttner F, Schmid M (2009) Repression of flowering by the miR172 target SMZ. PLoS Biol 7(7):e1000148PubMedCentralCrossRefPubMedGoogle Scholar
  23. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:473–497CrossRefGoogle Scholar
  24. Nag A, Jack T (2010) Chapter twelve-sculpting the flower; the role of microRNAs in flower development. Curr Top Dev Biol 91:349–378CrossRefPubMedGoogle Scholar
  25. Nair SK, Wang N, Turuspekov Y, Pourkheirandish M, Sinsuwongwat S, Chen G, Sameria M, Tagiria A, Hondab I, Watanabeb Y, Kanamoric H, Wickerd T, Steine N, Nagamuraa Y, Matsumotoa T, Komatsuda T (2010) Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci USA 107(1):490–495PubMedCentralCrossRefPubMedGoogle Scholar
  26. Poethig RS (2010) The past, present, and future of vegetative phase change. Plant Physiol 154(2):541–544PubMedCentralCrossRefPubMedGoogle Scholar
  27. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvit HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906CrossRefPubMedGoogle Scholar
  28. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520CrossRefPubMedGoogle Scholar
  29. Rogers K, Chen XM (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25(7):2383–2399PubMedCentralCrossRefPubMedGoogle Scholar
  30. Singh PK, Campbell MJ (2013) The interactions of microRNA and epigenetic modifications in prostate cancer. Cancers 5(3):998–1019PubMedCentralCrossRefPubMedGoogle Scholar
  31. Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68(12):2013–2037CrossRefPubMedGoogle Scholar
  32. Sun C, Zhao Q, Liu DD, You CX, Hao YJ (2013) Ectopic expression of the apple Md-miRNA156 h gene regulates flower and fruit development in Arabidopsis. Plant Cell Tissue Organ Cult 112(3):343–351CrossRefGoogle Scholar
  33. Sunkar R, Jagadeeswaran G (2008) In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol 8(1):37PubMedCentralCrossRefPubMedGoogle Scholar
  34. Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136(4):669–687CrossRefPubMedGoogle Scholar
  35. Wang JW, Park MY, Wang LJ, Koo Y, Chen XY, Weigel D, Poethig RS (2011) MiRNA control of vegetative phase change in Trees. PLoS Genet 7(2):e1002012PubMedCentralCrossRefPubMedGoogle Scholar
  36. Willmann MR, Poethig RS (2007) Conservation and evolution of miRNA regulatory programs in plant development. Curr Opin Plant Biol 10(5):503–511PubMedCentralCrossRefPubMedGoogle Scholar
  37. Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138(4):750–759PubMedCentralCrossRefPubMedGoogle Scholar
  38. Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38:465–475CrossRefPubMedGoogle Scholar
  39. Xing LB, Zhang D, Li YM, Zhao CP, Zhang SW, Shen YW, An N, Han MY (2014) Genome-wide identification of vegetative phase transition-associated microRNAs and target predictions using degradome sequencing in Malus hupehensis. BMC Genom 15(1):1125CrossRefGoogle Scholar
  40. Yan Z, Hossain MS, Wang J, Valdés-López O, Liang Y, Libault M, Qiu LJ, Stacey G (2013) miR172 regulates soybean nodulation. Mol Plant Microbe Interact 26(12):1371–1377CrossRefPubMedGoogle Scholar
  41. Yang L, Conway SR, Poethig RS (2011) Vegetative phase change is mediated by a leaf-derived signal that represses the transcription of miR156. Development 138:245–249PubMedCentralCrossRefPubMedGoogle Scholar
  42. Yanik H, Turktas M, Dundar E, Hernandez P, Dorado G, Unver T (2013) Genome-wide identification of alternate bearing-associated microRNAs (miRNAs) in olive (Olea europaea L.). BMC Plant Biol 13(1):10PubMedCentralCrossRefPubMedGoogle Scholar
  43. Yant L, Mathieu J, Dinh TT, Ott F, Lanz C, Wollmann H, Chen XM, Schmid M (2010) Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell 22(7):2156–2170PubMedCentralCrossRefPubMedGoogle Scholar
  44. Yu HP, Song CG, Jia QD, Wang C, Li F, Nicholas KK et al (2010) Computational identification of microRNAs in apple expressed sequence tags and validation of their precise sequences by miR-RACE. Physiol Plantarum 141:56–70CrossRefGoogle Scholar
  45. Zhu JK (2008) Reconstituting plant miRNA biogenesis. Proc Natl Acad Sci USA 29:9851–9985CrossRefGoogle Scholar
  46. Zhu QH, Helliwell CA (2010) Regulation of flowering time and floral patterning by miR172. J Exp Bot 62:9Google Scholar
  47. Zhu QH, Upadhyaya NM, Gubler F, Helliwell CA (2009) Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biol 9(1):149PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Qiang Zhao
    • 1
    • 2
    • 3
  • Chao Sun
    • 1
    • 2
    • 3
  • Dan-Dan Liu
    • 1
    • 2
    • 3
  • Yu-Jin Hao
    • 1
    • 2
    • 3
  • Chun-Xiang You
    • 1
    • 2
    • 3
    Email author
  1. 1.National Key Laboratory of Crop BiologyShandong Agricultural UniversityTai-anChina
  2. 2.National Research Center for Apple Engineering and TechnologyShandong Agricultural UniversityTai-anChina
  3. 3.College of Horticulture Science and EngineeringShandong Agricultural UniversityTai-anChina

Personalised recommendations