Advertisement

Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 122, Issue 3, pp 605–616 | Cite as

A method to identify early-stage transgenic Medicago truncatula with improved physiological response to water deficit

  • A. Alcântara
  • R. S. Morgado
  • S. Silvestre
  • J. Marques da Silva
  • A. Bernardes da Silva
  • P. Fevereiro
  • S. S. AraújoEmail author
Original Paper

Abstract

Phenotypic screening after transformation experiments aiming to identify lines with the enhanced/desired trait is still a time consuming process for most agricultural crops, especially when dealing with complex physiological responses such as water deficit. In this study we evaluated the suitability of non-destructive leaf gas-exchange analysis and imaging-PAM chlorophyll a fluorescence to select transgenic lines of Medicago truncatula expressing the Trehalose-6-Phosphate Synthase 1 (AtTPS1) from Arabidopsis thaliana with altered response to water deficit (WD) and WD recovery (WDR) in the early stages of the transformation process (T0). Primary transformants (T0) with different expression levels of a constitutive AtTPS1 construct were used. Additionally, we evaluated if the expression of the transgene could be correlated with the phenotype assessed. Among tested techniques and parameters measured, the net carbon assimilation (A) from gas-exchange analysis was the best parameter to early detect lines with WD and WDR improved performance, at the earliest stages of the transformation process. With this multidisciplinary approach, we selected 3 transgenic lines TPS7, TPS10 and TPS16 for further studies, which have higher or intermediate expression levels of the transgene and improved response to WD and WDR. This work will contribute to speed-up the identification of elite lines with confidence within a large number of individuals, thus reducing time, cost and labor associated with this plant improvement strategy.

Keywords

Early-stage selection Legumes Trehalose metabolism Physiological responses T0 transformants Water deficit 

Abbreviations

A

Net photosynthesis rate

Chl a

Chlorophyll a

Chl b

Chlorophyll b

MWD

Moderate water deficit

PAR

Photosynthetic active radiation

RT-qPCR

Reverse transcription quantitative PCR

RWC

Relative water content

SWC

Soil water content

SWD

Severe water deficit

WD

Water deficit

WDR

Water deficit recovery

WW

Well watered

T0

Primary transformants

T6P

Trehalose-6-phosphate

ΦPSII

Effective quantum yield of the photosystem II

Ψw

Leaf water potential

Notes

Acknowledgments

The financial support from Fundação para a Ciência e a Tecnologia (Lisbon, Portugal) is acknowledged through research projects PTDC/AGR-GPL/099866/2008, PTDC/AGR-GPL/110224/2009 and research unit GREEN-it “Bioresources for Sustainability” (UID/Multi/04551/2013). SSA acknowledges a grant by the CARIPLO Foundation (Milan, Italy), in scope of the Integrated Project ‘Advanced Priming Technologies for the Lombardy Agro-Seed Industry-PRIMTECH’ (Action 3, Code 2013-1727). The authors would like to thank to Prof. André Almeida (Ross University, St. Kitts and Nevis) for kindly reviewing the English language of this manuscript.

Supplementary material

11240_2015_793_MOESM1_ESM.ppt (143 kb)
Supplementary material 1 Figure S.1 – Representative PCR for the presence of the AtTPS1 fragment in regenerated transgenic M. truncatula lines. A 918 bp fragment was amplified in tested lines (TPS4, TPS7, TPS10, TPS14 and TPS 16) and positive control (C+, plasmid pBIN-2x35S-AtTPS1-t35S). No amplification was detected in non-transformed control (M910a) and non-template control (C-). M stands for molecular weight marker (1 kb DNA ladder) (PPT 141 kb)
11240_2015_793_MOESM2_ESM.doc (40 kb)
Supplementary material 2 (DOC 39 kb)

References

  1. Almeida AM, Villalobos E, Araújo SS, Leyman B, van Dijk P, Alfaro-Cardoso L, Fevereiro P, Torné JM, Santos DM (2005) Transformation of tobacco with an Arabidopsis thaliana gene involved in trehalose biosynthesis increases tolerance to several abiotic stresses. Euphytica 146:165–176. doi: 10.1007/s10681-005-7080-0 CrossRefGoogle Scholar
  2. Almeida AM, Bernardes da Silva AR, Araújo SS, Cardoso AC, Santos DM, Torné JM, Marques da Silva J, Paul MJ, Fevereiro P (2007) Responses to water withdrawal of tobacco plants genetically engineered with the AtTPS1 gene: a special reference to photosynthetic parameters. Euphytica 154:113–126. doi: 10.1007/s10681-006-9277-2 CrossRefGoogle Scholar
  3. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. doi: 10.1158/0008-5472.CAN-04-0496 PubMedCrossRefGoogle Scholar
  4. Araújo SS, Duque ASRLA, Santos DMMF, Fevereiro MPS (2004) An efficient transformation method to regenerate a high number of transgenic plants using a new embryogenic line of Medicago truncatula cv. Jemalong. Plant Cell Tissue Organ Cult 78:123–131. doi: 10.1023/B:TICU.0000022540.98231.f8 CrossRefGoogle Scholar
  5. Araújo SS, Duque A, Silva J, Santos D, Silva AB, Fevereiro P (2013) Water deficit and recovery response of Medicago truncatula plants expressing the ELIP-like DSP22. Biol Plant 57:159–163CrossRefGoogle Scholar
  6. Araújo SS, Beebe S, Crespi M, Delbreil B, González EM, Gruber V, Lejeune-Henaut I, Link W, Monteros MJ, Prats E, Rao I, Vadez V, Vaz Patto MC (2015) Abiotic stress responses in legumes: strategies used to cope with environmental challenges. Crit Rev Plant Sci 34:237–280. doi: 10.1080/07352689.2014.898450 CrossRefGoogle Scholar
  7. Bhat S, Srinivasan S (2002) Molecular and genetic analyses of transgenic plants. Plant Sci 163:673–681. doi: 10.1016/S0168-9452(02)00152-8 CrossRefGoogle Scholar
  8. Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326. doi: 10.1146/annurev.arplant.48.1.297 PubMedCrossRefGoogle Scholar
  9. Butaye KMJ, Cammue BPA, Delauré SL, De Bolle MFC (2005) Approaches to minimize variation of transgene expression in plants. Mol Breed 16:79–91. doi: 10.1007/s11032-005-4929-9 CrossRefGoogle Scholar
  10. Capitão C, Paiva JAP, Santos DM, Fevereiro P (2011) In Medicago truncatula, water deficit modulates the transcript accumulation of components of small RNA pathways. BMC Plant Biol 11:79. doi: 10.1186/1471-2229-11-79 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Čatský J (1960) Determination of water deficit in disks cut out from leaf blades. Biol Plant 2:76–78. doi: 10.1007/BF02920701 CrossRefGoogle Scholar
  12. Confalonieri M, Cammareri M, Biazzi E, Pecchia P, Fevereiro MPS, Balestrazzi A, Tava A, Conicella C (2009) Enhanced triterpene saponin biosynthesis and root nodulation in transgenic barrel medic (Medicago truncatula Gaertn.) expressing a novel beta-amyrin synthase (AsOXA1) gene. Plant Biotechnol J 7:172–182. doi: 10.1111/j.1467-7652.2008.00385.x PubMedCrossRefGoogle Scholar
  13. Confalonieri M, Faè M, Balestrazzi A, Donà M, Macovei A, Valassi A, Giraffa G, Carbonera D (2014) Enhanced osmotic stress tolerance in Medicago truncatula plants overexpressing the DNA repair gene MtTdp2α (tyrosyl-DNA phosphodiesterase 2). Plant Cell Tissue Organ Cult 116:187–203. doi: 10.1007/s11240-013-0395-y CrossRefGoogle Scholar
  14. Coombs J, Hall D, Long S, Scurlock J (1985) Techniques in bioproductivity and photosynthesis, 2nd edn. Tech Bioprod Photosynth. doi: 10.1016/B978-0-08-031999-5.50001-7 Google Scholar
  15. Da Silva JM, Arrabaça MC (2004) Contributions of soluble carbohydrates to the osmotic adjustment in the C4 grass Setaria sphacelata: a comparison between rapidly and slowly imposed water stress. J Plant Physiol 161:551–555. doi: 10.1078/0176-1617-01109 PubMedCrossRefGoogle Scholar
  16. Debast S, Nunes-Nesi A, Hajirezaei MR, Hofmann J, Sonnewald U, Fernie AR, Börnke F (2011) Altering trehalose-6-phosphate content in transgenic potato tubers affects tuber growth and alters responsiveness to hormones during sprouting. Plant Physiol 156:1754–1771. doi: 10.1104/pp.111.179903 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Delorge I, Janiak M, Carpentier S, Van Dijck P (2014) Fine tuning of trehalose biosynthesis and hydrolysis as novel tools for the generation of abiotic stress tolerant plants. Front Plant Sci 5:147. doi: 10.3389/fpls.2014.00147 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Goddijn OJ, Verwoerd TC, Voogd E, Krutwagen RW, de Graaf PT, van Dun K, Poels J, Ponstein AS, Damm B, Pen J (1997) Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol 113:181–190PubMedCentralPubMedCrossRefGoogle Scholar
  19. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186. doi: 10.1093/nar/gkr944 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218. doi: 10.1007/BF01977351 CrossRefGoogle Scholar
  21. Imai MI (2011) Abiotic stress in plants—mechanisms and adaptations. doi: 10.5772/895
  22. Jang I-C, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Choi YD, Nahm BH, Kim JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516–524. doi: 10.1104/pp.007237 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Li H-W, Zang B-S, Deng X-W, Wang X-P (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234:1007–1018. doi: 10.1007/s00425-011-1458-0 PubMedCrossRefGoogle Scholar
  24. Lichtenthaler H (1987) Chlorophylls and carotenoids—pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382. doi: 10.1016/0076-6879(87)48036-1 CrossRefGoogle Scholar
  25. Lunn JE, Delorge I, Figueroa CM, van Dijck P, Stitt M (2014) Trehalose metabolism in plants. Plant J 79:544–567. doi: 10.1111/tpj.12509 PubMedCrossRefGoogle Scholar
  26. Martínez-Barajas E, Delatte T, Schluepmann H, de Jong GJ, Somsen GW, Nunes C, Primavesi LF, Coello P, Mitchell RA, Paul MJ (2011) Wheat grain development is characterized by remarkable trehalose 6-phosphate accumulation pregrain filling: tissue distribution and relationship to SNF1-related protein kinase1 activity. Plant Physiol 156:373–381. doi: 10.1104/pp.111.174524 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Mieog JC, Howitt CA, Ral J-P (2013) Fast-tracking development of homozygous transgenic cereal lines using a simple and highly flexible real-time PCR assay. BMC Plant Biol 13:71. doi: 10.1186/1471-2229-13-71 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Miranda JA, Avonce N, Suárez R, Thevelein JM, Van Dijck P, Iturriaga G (2007) A bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. Planta 226:1411–1421. doi: 10.1007/s00425-007-0579-y PubMedCrossRefGoogle Scholar
  29. Neves LO, Tomaz L, Fevereiro MPS (2001) Micropropagation of Medicago truncatula Gaertn. cv. Jemalong and Medicago truncatula ssp. Narbonensis. Plant Cell Tissue Organ Cult 67:81–84. doi: 10.1023/A:1011699608494 CrossRefGoogle Scholar
  30. Nunes CMJ, Araújo SS, Marques da Silva J, Fevereiro P, Bernandes da Silva AR (2008) Physiological responses of the legume model Medicago truncatula cv. Jemalong to water deficit. Environ Exp Bot 63:289–296. doi: 10.1016/j.envexpbot.2007.11.004 CrossRefGoogle Scholar
  31. Nunes CMJ, Araújo SS, Marques da Silva J, Fevereiro P, Bernandes da Silva AR (2009) Photosynthesis light curves: a method for screening water deficit resistance in the model legume Medicago truncatula. Ann Appl Biol 155:321–332. doi: 10.1111/j.1744-7348.2009.00341.x CrossRefGoogle Scholar
  32. Nunes C, O’Hara LE, Primavesi LF, Delatte TL, Schluepmann H, Somsen GW, Silva AB, Fevereiro PS, Wingler A, Paul MJ (2013) The trehalose 6-phosphate/SnRK1 signaling pathway primes growth recovery following relief of sink limitation. Plant Physiol 162:1720–1732. doi: 10.1104/pp.113.220657 PubMedCentralPubMedCrossRefGoogle Scholar
  33. O’Hara LE, Paul MJ, Wingler A (2012) How do sugars regulate plant growth and development? New insight into the role of trehalose-6-phosphate. Mol Plant. doi: 10.1093/mp/sss120 PubMedGoogle Scholar
  34. Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441. doi: 10.1146/annurev.arplant.59.032607.092945 PubMedCrossRefGoogle Scholar
  35. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45. doi: 10.1093/nar/29.9.e45 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Ponnu J, Wahl V, Schmid M (2011) Trehalose-6-phosphate: connecting plant metabolism and development. Front Plant Sci 2:70. doi: 10.3389/fpls.2011.00070 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbour Laboratory Press, New YorkGoogle Scholar
  38. Trindade I, Capitão C, Dalmay T, Fevereiro MP, Santos DM (2010) miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta 231:705–716. doi: 10.1007/s00425-009-1078-0 PubMedCrossRefGoogle Scholar
  39. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034. doi: 10.1186/gb-2002-3-7-research0034
  40. Wingler A (2002) The function of trehalose biosynthesis in plants. Phytochemistry 60:437–440. doi: 10.1016/S0031-9422(02)00137-1 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Biosystems and Integrative Sciences Institute (BioISI)LisbonPortugal
  2. 2.Departamento de Biologia Vegetal, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  3. 3.Plant Cell Biotechnology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB)Universidade Nova de Lisboa (UNL)OeirasPortugal
  4. 4.Unidade de Veterinária e Zootecnia, Instituto de Investigação Científica e Tropical (BIOTROP-CVZ)Avenida da Universidade TécnicaLisbonPortugal
  5. 5.Plant Biotechnology Laboratory, Department of Biology and Biotechnology ‘L. Spallanzani’Università degli Studi di PaviaPaviaItaly

Personalised recommendations