Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 121, Issue 3, pp 741–760 | Cite as

In vitro shoot organogenesis and comparative analysis of endogenous phytohormones in kohlrabi (Brassica oleracea var. gongylodes): effects of genotype, explant type and applied cytokinins

  • Tatjana Ċosiċ
  • Václav Motyka
  • Martin Raspor
  • Jelena Savić
  • Aleksandar Cingel
  • Branka Vinterhalter
  • Dragan Vinterhalter
  • Alena Trávníčková
  • Petre I. Dobrev
  • Borut Bohanec
  • Slavica Ninković
Original Paper


Kohlrabi (Brassica oleracea var. gongylodes) cultivars Vienna Purple (VP) and Vienna White (VW) were tested for their ability of de novo organogenesis in vitro. Root, cotyledon, hypocotyl explants and intact seedlings were cultivated on Murashige and Skoog (MS) media supplemented with different cytokinins: benzyladenine (BA), thidiazuron (TDZ), trans- or cis-zeatin. All tested cytokinins, including cis-zeatin, induced shoot regeneration from hypocotyl explants and intact seedlings, with seedlings being most successful for regeneration efficiency and viability of regenerated shoots in both cultivars. The highest frequency of shoot regeneration was achieved on MS with BA (60 %) or TDZ (50 %) for VP; and with BA (50 %), TDZ (47.5 %) or transZ (37.5 %) for VW. Measurements of the endogenous cytokinin and indole-3-acetic acid (IAA) contents in both hypocotyl explants and seedlings with regenerated shoots (HRSs and SRSs) suggested that the observed differences in organogenic response between these two types of explants were related to their cytokinin and IAA contents. HRSs generally exhibited elevated amounts of total cytokinins, while SRSs displayed a higher IAA/bioactive cytokinins ratio. Shoots regenerated from seedlings were further successfully multiplicated on a medium supplemented with BA (0.5 mg L−1). The rooting potential of multiplicated shoots was tested on media supplemented with 2 or 4 mg L−1 indole-3-butyric acid (IBA), with the higher concentration of IBA leading to more efficient rooting. Rooted plantlets were successfully planted into soil and flow cytometric analysis did not reveal ploidy variations, indicating that the described protocol is fast and efficient for kohlrabi regeneration.


Kohlrabi Cytokinin Auxin Hypocotyl Seedling De novo shoot organogenesis 


The system of CK abbreviations was adopted and modified according to Kamínek et al. (2003).


N 6-benzyladenine


















De novo shoot organogenesis
















Hypocotyl with regenerated shoots


Indole-3-acetic acid


Indole-3-butyric acid


N 6-(∆2-isopentenyl)adenine


N 6-(∆2-isopentenyl)adenosine


N 6-(∆2-isopentenyl)adenine-7-glucoside


N 6-(∆2-isopentenyl)adenine-9-glucoside


N 6-(∆2-isopentenyl)adenosine -5′-monophosphate


Plant growth regulator


Seedling with regenerated shoots


















Vienna Purple cultivar


Vienna White cultivar



This work was supported by the Ministry of Education, Science and Technological Development of Serbia (No. 173015) and the Czech Science Foundation (P506/11/0774).


  1. Abbasi BH, Khan M, Guo B, Bokhari SA, Khan MA (2011) Efficient regeneration and antioxidative enzyme activities in Brassica rapa var. turnip. Plant Cell Tissue Organ Cult 105:337–344CrossRefGoogle Scholar
  2. Ahmadabadi M, Bock R (2010) Development of a highly responsive leaf-based regeneration system for Peperomia species. Turk J Bot 34:329–334Google Scholar
  3. Akasaka-Kennedy Y, Yoshida H, Takahata Y (2005) Efficient plant regeneration from leaves of rape seed (Brassica napus L.): influence of AgNO3 and genotype. Plant Cell Rep 24:649–654CrossRefPubMedGoogle Scholar
  4. Aremu AO, Plačková L, Bairu MW, Novák O, Plíhalová L, Doležal K, Finnie JF, Van Staden J (2014a) How does exogenously applied cytokinin type affect growth and endogenous cytokinins in micropropagated Merwilla plumbea? Plant Cell Tissue Organ Cult 118:245–256CrossRefGoogle Scholar
  5. Aremu AO, Plačková L, Bairu MW, Novák O, Szüčová L, Doležal K, Finnie JF, Van Staden J (2014b) Endogenous cytokinin profiles of tissue-cultured and acclimatized ‘Williams’ bananas subjected to different aromatic cytokinin treatments. Plant Sci 214:88–98CrossRefPubMedGoogle Scholar
  6. Auer CA, Cohen JD, Laloue M, Cooke TJ (1992) Comparison of benzyl adenine metabolism in two Petunia hybrida lines differing in shoot organogenesis. Plant Physiol 98:1035–1041CrossRefPubMedCentralPubMedGoogle Scholar
  7. Bajguz A, Piotrowska A (2009) Conjugates of auxin and cytokinin. Phytochemistry 70:957–969CrossRefPubMedGoogle Scholar
  8. Baroja-Fernández E, Aguirreolea J, Martínková H, Hanuš J, Strnad M (2002) Aromatic cytokinins in micropropagated potato plants. Plant Physiol Biochem 40:217–224CrossRefGoogle Scholar
  9. Bassil NV, Mok DWS, Mok MC (1993) Partial purification of a cis-trans-isomerase of zeatin from immature seed of Phaseolus vulgaris L. Plant Physiol 102:867–872PubMedCentralPubMedGoogle Scholar
  10. Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602CrossRefPubMedGoogle Scholar
  11. Bhalla PL, de Weerd N (1999) In vitro propagation of cauliflower, Brassica oleracea var. botrytis for hybrid seed production. Plant Cell Tissue Organ Cult 56:89–95CrossRefGoogle Scholar
  12. Bouza L, Jacques M, Sotta B, Miginiac E (1993) The differential effect of N6-benzyl-adenine and N6-(Δ2-isopentenyl)-adenine on in vitro propagation of Paeonia suffruticosa Andr. is correlated with different hormone contents. Plant Cell Rep 12:593–596CrossRefPubMedGoogle Scholar
  13. Bretagne B, Chupeau MC, Chupeau Y, Fouilloux G (1994) Improved flax regeneration from hypocotyls using thidiazuron as a cytokinin source. Plant Cell Rep 14:120–124PubMedGoogle Scholar
  14. Brugière N, Jiao S, Hantke S, Zinselmeier C, Roessler JA, Niu X, Jones RJ, Habben JE (2003) Cytokinin oxidase gene expression in maize is localized to the vasculature, and is induced by cytokinins, abscisic acid, and abiotic stress. Plant Physiol 132:1228–1240CrossRefPubMedCentralPubMedGoogle Scholar
  15. Cardoza V, Stewart CN (2004) Brassica biotechnology: progress in cellular and molecular biology. In Vitro Cell Dev Biol Plant 40:542–551CrossRefGoogle Scholar
  16. Centeno ML, Rodríguez A, Feito I, Fernández B (1996) Relationship between endogenous auxin and cytokinin levels and morphogenic responses in Actinia deliciosa tissue cultures. Plant Cell Rep 16:58–62CrossRefPubMedGoogle Scholar
  17. Che P, Gingerich DJ, Lall S, Howell SH (2002) Global and hormone-induced gene expression changes during shoot development in Arabidopsis. Plant Cell 14:2771–2785CrossRefPubMedCentralPubMedGoogle Scholar
  18. Che P, Lall S, Nettleton D, Howell SH (2006) Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiol 141:620–637CrossRefPubMedCentralPubMedGoogle Scholar
  19. Cheng ZJ, Wang L, Sun W, Zhang Y, Zhou C, Su YH, Li W, Sun TT, Zhao XY, Li XG, Cheng Y, Zhao Y, Xie Q, Zhang XS (2013) Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3. Plant Physiol 161:240–251CrossRefPubMedCentralPubMedGoogle Scholar
  20. Chikkala VRN, Nugent G, Dix P, Stevenson T (2009) Regeneration from leaf explants and protoplasts of Brassica oleracea var. botrytis (cauliflower). Sci Hortic 119:330–334CrossRefGoogle Scholar
  21. Cogbill S, Faulcon T, Jones G, McDaniel M, Harmon G, Blackmon R, Young M (2010) Adventitious shoot regeneration from cotyledonary explants of rapid-cycling fast plants of Brassica rapa L. Plant Cell Tissue Organ Cult 101:127–133CrossRefGoogle Scholar
  22. Coleman GD, Ernst SG (1989) In vitro shoot regeneration of Populus deltoids: effect of cytokikin and genotype. Plant Cell Rep 8:459–462CrossRefPubMedGoogle Scholar
  23. Ćosić T, Vinterhalter B, Vinterhalter D, Mitić N, Cingel A, Savić J, Bohanec B, Ninković S (2013) In vitro plant regeneration from immature zygotic embryos and repetitive somatic embryogenesis in kohlrabi (Brassica oleracea var. gongylodes). In Vitro Cell Dev Biol Plant 49:294–303CrossRefGoogle Scholar
  24. Cuesta C, Rodriguez A, Centeno ML, Ordas RJ, Fernandez B (2009) Caulogenic induction in cotyledons of tone pine (Pinus pinea): relationship between organogenic response and benzyladenine trends in elected families. J Plant Physiol 166:1162–1171CrossRefPubMedGoogle Scholar
  25. Cuesta C, Novák O, Ordás RJ, Fernández B, Strnad M, Doležal K, Rodríguez A (2012) Endogenous cytokinin profiles and their relationships to between-family differences during adventitious caulogenesis in Pinus pinea cotyledons. J Plant Physiol 169:1830–1837CrossRefPubMedGoogle Scholar
  26. Dai XG, Shi XP, Ye YM, Fu Q, Bao MZ (2009) High frequency plant regeneration from cotyledon and hypocotyl explants of ornamental kale. Biol Plant 53:769–773CrossRefGoogle Scholar
  27. Dobrev P, Kamínek M (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A 950:21–29CrossRefPubMedGoogle Scholar
  28. Dobrev P, Havlíček L, Vágner M, Malbeck J, Kamínek M (2005) Purification and determination of plant hormones auxin and abscisic acid using solid phase extraction and two-dimensional high performance liquid chromatograophy. J Chromatogr A 1075:159–166CrossRefPubMedGoogle Scholar
  29. Duclercq J, Sangwan-Norreel B, Catterou M, Sangwan RS (2011) De novo shoot organogenesis: from art to science. Trends Plant Sci 16:597–606CrossRefPubMedGoogle Scholar
  30. Dwivedi S, Vaňková R, Motyka V, Herrera C, Žižková E, Auer C (2010) Characterization of Arabidopsis thaliana mutant ror-1 (roscovitine-resistant) and its utilization in understanding of the role of cytokinin N-glucosylation pathway in plants. Plant Growth Regul 61:231–242CrossRefGoogle Scholar
  31. Eklöf S, Åstot C, Blackwell J, Moritz T, Olsson O, Sandberg G (1997) Auxin-cytokinin interactions in wild-type and transgenic tobacco. Plant Cell Physiol 38:225–235CrossRefGoogle Scholar
  32. Emery RJN, Leport L, Barton JE, Turner NC, Atkins CA (1998) cis-Isomers of cytokinins predominate in chickpea seeds throughout their development. Plant Physiol 117:1515–1523CrossRefPubMedCentralPubMedGoogle Scholar
  33. Emery RJN, Ma Q, Atkins CA (2000) The forms and sources of cytokinins in developing white lupine seeds and fruits. Plant Physiol 123:1593–1604CrossRefPubMedCentralPubMedGoogle Scholar
  34. Escalona VH, Aguayo E, Artés E (2007) Extending the shelf life of kohlrabi stems by modified atmosphere packaging. J Food Sci 72:308–313CrossRefGoogle Scholar
  35. Gajdošová S, Spíchal L, Kamínek M, Hoyerová K, Novák O, Dobrev PI, Galuszka P, Klíma P, Gaudinová A, Žižková E, Hanuš J, Dančák M, Trávníček B, Pešek B, Krupička M, Vaňková R, Strnad M, Motyka V (2011) Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J Exp Bot 62:2827–2840CrossRefPubMedGoogle Scholar
  36. Ghnaya AB, Charles G, Branchard M (2008) Rapid shoot regeneration from thin cell layer explants excised from petioles and hypocotyls in four cultivars of Brassica napus L. Plant Cell Tissue Organ Cult 92:25–30CrossRefGoogle Scholar
  37. Glendening TM, Sjolund R (1988) In vitro propagation of kohlrabi from leaf explants. HortScience 23:772Google Scholar
  38. Gordon SP, Heisler MG, Reddy GV, Ohno C, Das P, Meyerowitz EM (2007) Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134:3539–3548CrossRefPubMedGoogle Scholar
  39. Grosch R, Schneider JHM, Kofoet A (2004) Characterisation of Rhizoctonia solani anastomosis groups causing bottom rot in field-grown lettuce in Germany. Eur J Plant Pathol 110:53–62CrossRefGoogle Scholar
  40. Haddadi P, Moieni A, Karimzadeh G, Abdollahi MR (2008) Effects of gibberellin, abscisic acid and embryo desiccation on normal plantlet regeneration, secondary embryogenesis and callogenesis in microspore culture of Brassica napus L. cv. PF704. Int J Plant Prod 2:153–162Google Scholar
  41. Hansen LN, Ortiz R, Andersen SB (1999) Genetic analysis of protoplast regeneration ability in Brassica oleracea. Plant Cell Tissue Organ Cult 58:127–132CrossRefGoogle Scholar
  42. Jones B, Andersson Gunnerås S, Petersson SV, Tarkowski P, Graham N, May S, Dolezal K, Sandberg G, Ljung K (2010) Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell 22:2956–2969CrossRefPubMedCentralPubMedGoogle Scholar
  43. Kamal GB, Illich KG, Asadollah A (2007) Effect of genotype, explant type and nutrient medium components on canola (Brassics napus L.) shoot in vitro organogenesis. Afr J Biotechnol 6:861–867Google Scholar
  44. Kamínek M, Pačes V, Corse J, Challice JS (1979) Effect of stereospecific hydroxylation of N6-(∆2-isopentenyl)adenosine on cytokinin activity. Planta 145:239–243CrossRefPubMedGoogle Scholar
  45. Kamínek M, Motyka V, Vaňková R (1997) Regulation of cytokinin content in plant cells. Physiol Plant 101:689–700CrossRefGoogle Scholar
  46. Kamínek M, Březinová A, Gaudinová A, Motyka V, Vaňková R, Zažímalová E (2003) Purine cytokinins: a proposal of abbreviations. Plant Growth Regul 32:253–256CrossRefGoogle Scholar
  47. Kasahara H, Takei K, Ueda N, Hishiyama S, Yamaya T, Kamiya Y, Yamaguchi S, Sakakibara H (2004) Distinct isoprenoid origins of cis- and trans-zeatin biosyntheses in Arabidopsis. J Biol Chem 279:14049–14054CrossRefPubMedGoogle Scholar
  48. Khan MR, Rashid H, Ansar M, Chaudry Z (2003) High frequency shoot regeneration and Agrobacterium-mediated DNA transfer in Canola (Brassica napus). Plant Cell Tissue Organ Cult 75:223–231CrossRefGoogle Scholar
  49. Klemš M, Slámová Z, Motyka V, Malbeck J, Trávníčková A, Macháčková I, Holík J, Procházka S (2011) Changes in cytokinin levels and metabolism in tobacco (Nicotiana tabacum L.) explants during in vitro shoot organogenesis induced by trans-zeatin and dihydrozeatin. Plant Growth Regul 65:427–437CrossRefGoogle Scholar
  50. Klíma M, Vyvadilová M, Kučera V (2004) Production and utilization of doubled haploids in Brassica oleracea vegetables. Hortic Sci Prague 31:119–123Google Scholar
  51. Koh WL, Loh CS (2000) Direct somatic embryogenesis, plant regeneration and in vitro flowering in rapid-cycling Brassica napus. Plant Cell Rep 19:1177–1183CrossRefGoogle Scholar
  52. Lexa M, Genkov T, Malbeck J, Macháčková I, Brzobohatý B (2003) Dynamics of endogenous cytokinin pools in tobacco seedlings: a modelling approach. Ann Bot 91:585–597CrossRefPubMedCentralPubMedGoogle Scholar
  53. Lillo C, Shanin EA (1986) Rapid regeneration of plants from hypocotyl protoplasts and root segments of cabbage. HortScience 21:315–317Google Scholar
  54. Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127CrossRefGoogle Scholar
  55. Liu J, Mehdi S, Topping J, Tarkowski P, Lindsey K (2010) Modelling and experimental analysis of hormonal crosstalk in Arabidopsis. Mol Syst Biol 6: Article number 373Google Scholar
  56. LoSchiavo F, Pitto L, Giuliano G, Torti G, Nuti-Ronchi V, Marazziti D, Vergara R, Orselli S, Terzi M (1989) DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs. Theor Appl Genet 77:325–331CrossRefPubMedGoogle Scholar
  57. Martin RC, Mok MC, Habben JE, Mok DWS (2001) A cytokinin gene from maize encoding an O-glucosyltransferase specific to cis-zeatin. Proc Natl Acad Sci USA 98:5922–5926CrossRefPubMedCentralPubMedGoogle Scholar
  58. Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37:128–138CrossRefPubMedGoogle Scholar
  59. Moghaieb R, El-Awady M, El Mergawy R, Youssef S, El-Sharkawy A (2006) A reproducible protocol for regeneration and transformation in canola (Brassica napus L.). Afr J Biotechnol 5:143–148Google Scholar
  60. Mollika SR, Sarker RH, Hoque MI (2011) In vitro plant regeneration in Brassica spp. Plant Tissue Cult Biotechnol 21:127–134CrossRefGoogle Scholar
  61. Moncaleán P, Rodríguez A, Fernández B (2003) Effect of different benzyladenine time pulses on the endogenous levels of cytokinins, indole-3-acetic acid and abscisic acid in micropropagated explants of Actinidia deliciosa. Plant Physiol Biochem 41:149–155CrossRefGoogle Scholar
  62. Montalbán IA, Novák O, Rolčik J, Strnad M, Moncaleán P (2013) Endogenous cytokinin and auxin profiles during in vitro organogenesis from vegetative buds of Pinus radiata adult trees. Physiol Plant 148:214–231CrossRefPubMedGoogle Scholar
  63. Motte H, Vereecke D, Geelen D, Werbrouck S (2014) The molecular path to in vitro shoot regeneration. Biotechnol Adv 32:107–121CrossRefPubMedGoogle Scholar
  64. Motyka V, Vaňková R, Čapková V, Petrášek J, Kamínek M, Schmülling T (2003) Cytokinin-induced upregulation of cytokinin oxidase activity in tobacco includes changes in enzyme glycosylation and secretion. Physiol Plant 117:11–21CrossRefGoogle Scholar
  65. Msikita W, Skirvin RM (1989) In vitro regeneration from hypocotyl and seedling cotyledons of tronchuda (Brassica oleracea var. tronchuda Bailey). Plant Cell Tissue Organ Cult 19:159–165CrossRefGoogle Scholar
  66. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  67. National Institute for Health and Welfare, Nutrition Unit. Fineli (2011) Finnish Food Composition Database Release 14, Helsinki 2011. Accessed 8 June 2012
  68. Neelakandan AK, Wang K (2012) Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep 31:597–620CrossRefPubMedGoogle Scholar
  69. Nikolić R, Mitić N, Miletić R, Nešković M (2006) Effects of cytokinins on in vitro seed germination and early seedling morphogenesis in Lotus corniculatus L. J Plant Growth Regul 25:187–194CrossRefGoogle Scholar
  70. Nordström A, Tarkowski P, Tarkowska D, Norbaek R, Åstot C, Dolezal K, Sandberg G (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development. Proc Natl Acad Sci USA 101:8039–8044CrossRefPubMedCentralPubMedGoogle Scholar
  71. Okubo H, Wada K, Uemoto S (1991) In vitro morphogenetic response and distribution of endogenous plant hormones in hypocotyl segment of snapdragon (Antirrhinum majus L.). Plant Cell Rep 10:501–504CrossRefPubMedGoogle Scholar
  72. Ono Y, Takahata Y, Kaizuma N (1994) Effect of genotype on shoot regeneration from cotyledonary explants of rapeseed (Brassica napus L.). Plant Cell Rep 14:13–17CrossRefPubMedGoogle Scholar
  73. Otto F (1988) High resolution DNA—flow cytometry using DAPI, Protocol 1, Partec Arlesheim, MünsterGoogle Scholar
  74. Ovesná J, Ptacek L, Opatrny Z (1993) Factors influencing the regeneration capacity of oilseed rape and cauliflower in transformation experiments. Biol Plant 35:107–112CrossRefGoogle Scholar
  75. Parker CW, Entsch B, Letham DS (1986) Inhibitors of two enzymes which metabolize cytokinins. Phytochemistry 25:303–310CrossRefGoogle Scholar
  76. Paul S, Sikdar SR (2005) Regeneration of plants from root explant of two Indian cultivars of Brassica campestris L. through somatic embryogenesis. Curr Sci 89:1323–1326Google Scholar
  77. Pavlović S, Vinterhalter B, Mitić N, Adžić S, Pavlović N, Zdravković M, Vinterhalter D (2010) In vitro shoot regeneration from seedling explants in Brassica vegetables: red cabbage, broccoli, Savoy cabbage and cauliflower. Arch Biol Sci 62:337–345CrossRefGoogle Scholar
  78. Pellegrineschi A (1997) In vitro plant regeneration via organogenesis of cowpea [Vigna unguiculata (L.) Walp.]. Plant Cell Rep 17:89–95CrossRefGoogle Scholar
  79. Pernisová M, Klíma P, Horák J, Válková M, Malbeck J, Souček P, Reichman P, Hoyerová K, Dubová J, Friml J, Zažímalová E, Hejátko J (2009) Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proc Natl Acad Sci USA 106:3609–3614CrossRefPubMedCentralPubMedGoogle Scholar
  80. Raspor M, Motyka V, Žižková E, Dobrev PI, Trávníčková A, Zdravković-Korać S, Simonović A, Ninković S, Dragićević IC (2012) Cytokinin profiles of AtCKX2-overexpressing potato plants and the impact of altered cytokinin homeostasis on tuberization in vitro. J Plant Growth Regul 31:460–470CrossRefGoogle Scholar
  81. Ravanfar SA, Aziz MA, Kadir MA, Rashid AA, Haddadi F (2011) In vitro adventitious shoot regeneration and acclimatisation of Brassica oleracea subsp. italica cv Green Marvel. Afr J Biotechnol 10:5614–5619Google Scholar
  82. Ravanfar SA, Aziz MA, Rashid AA, Salim S (2014) In vitro adventitious shoot regeneration from cotyledon explant of Brassica oleracea subsp. italica and Brassica oleracea subsp. capitata using TDZ and NAA. Pak J Bot 46:329–335Google Scholar
  83. Schmitz RY, Skoog F, Playtis AJ, Leonard NJ (1972) Cytokinins: synthesis and biological activity of geometric and position isomers of zeatin. Plant Physiol 50:702–705CrossRefPubMedCentralPubMedGoogle Scholar
  84. Selman LW, Kulasegaram S (1966) Development of the stem tuber in kohlrabi. J Exp Bot 18:471–490CrossRefGoogle Scholar
  85. Sharma KK, Thorpe TA (1989) In vitro regeneration of shoot buds and plantlets from seedling root segments of Brassica napus L. Plant Cell Tissue Organ Cult 18:129–141CrossRefGoogle Scholar
  86. Souza BM, Kraus JE, Enders L, Mercier H (2003) Relationships between endogenous hormonal levels and axillary bud development of Ananas comosus nodal segments. Plant Physiol Biochem 41:733–739CrossRefGoogle Scholar
  87. Sparrow PAC, Townsend TM, Morgan CL, Dale PJ, Arthur AE, Irwin JA (2004) Genetic analysis of in vitro shoot regeneration from cotyledonary petioles of Brassica oleracea. Theor Appl Genet 108:1249–1255CrossRefPubMedGoogle Scholar
  88. Spíchal L, Rakova NY, Riefler M, Mizuno T, Romanov GA, Strnad M, Schmülling T (2004) Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol 45:1299–1305CrossRefPubMedGoogle Scholar
  89. Sretenović-Rajičić T, Ninković S, Vinterhalter B, Miljuš-Đukić J, Vinterhalter D (2004) Introduction of resistance to herbicide Basta® in Savoy cabagge. Biol Plant 48:431–436CrossRefGoogle Scholar
  90. Sretenović-Rajičić T, Ninković S, Miljuš-Đukić J, Vinterhalter B, Vinterhalter D (2006) Agrobacterium rhizogenes-mediated transformation of Brassica oleracea var. sabauda and B. oleracea var. capitata. Biol Plant 50:525–530CrossRefGoogle Scholar
  91. Stirk WA, Novák O, Václavíková K, Tarkowski P, Strnad M, van Staden J (2008) Spatial and temporal changes in endogenous cytokinins in developing pea roots. Planta 227:1279–1289CrossRefPubMedGoogle Scholar
  92. Stirk WA, Václavíková K, Novák O, Gajdošová S, Kotland O, Motyka V, Strnad M, van Staden J (2012) Involvement of cis-zeatin, dihydrozeatin, and aromatic cytokinins in germination and seedling establishment of maize, oats, and lucerne. J Plant Growth Regul 31:392–405CrossRefGoogle Scholar
  93. Suri SS, Saini ARK, Ramawat KG (2005) High frequency regeneration and Agrobacterium tumefaciens-mediated transformation of broccoli (Brassica oleracea var. italica). Eur J Hortic Sci 70:71–78Google Scholar
  94. Takei K, Yamaya T, Sakakibara H (2004) Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin. J Biol Chem 279:41866–41872CrossRefPubMedGoogle Scholar
  95. Teo W, Lakshmanan P, Kumar P, Goh CJ, Swarup S (1997) Direct shoot formation and plant regeneration from cotyledon explants of rapid-cycling Brassica rapa. In Vitro Cell Dev Biol Plant 33:288–292CrossRefGoogle Scholar
  96. Valdés AE, Ordas RJ, Fernandez B, Centeno ML (2001) Relationships between hormonal contents and the organogenic response in Pinus pinea cotyledons. Plant Physiol Biochem 39:377–384CrossRefGoogle Scholar
  97. Veach YK, Martin RC, Mok DWS, Malbeck J, Vaňková R, Mok MC (2003) O-Glucosylation of cis-zeatin in maize. Characterization of genes, enzymes, and endogenous cytokinins. Plant Physiol 131:1374–1380CrossRefPubMedCentralPubMedGoogle Scholar
  98. Verma SK, Yücesan BB, Şahin G, Gürel S, Gürel E (2011) Direct shoot regeneration from leaf explants of Digitalis lamarckii, an endemic medicinal species. Turk J Bot 35:689–695Google Scholar
  99. Vinterhalter D, Sretenović-Rajičić T, Vinterhalter B, Ninković S (2007) Genetic transformation of Brassica oleracea vegetables. Transgenic Plant J 1:340–355Google Scholar
  100. Wang Y, Tong Y, Li Y, Zhang Y, Zhang J, Feng J, Feng H (2011) High frequency plant regeneration from microspore-derived embryos of ornamental kale (Brassica oleracea L. var. acephala). Sci Hortic 130:296–302CrossRefGoogle Scholar
  101. Wong KW, Loh CS (1988) In vitro regeneration of plantlets from root segments of Brassica alboglabra Bailey. Sci Hortic Amst 35:7–14CrossRefGoogle Scholar
  102. Yonekura-Sakakibara K, Kojima M, Yamaya T, Sakakibara H (2004) Molecular characterization of cytokinin-responsive histidine kinases in maize. Differential ligand preferences and response to cis-zeatin. Plant Physiol 134:1654–1661CrossRefPubMedCentralPubMedGoogle Scholar
  103. Zhang Y, Xu J, Han L, Wei W, Guan Z, Cong L, Chai T (2006) Efficient regeneration and Agrobacterium-mediated transformation of Brassica juncea. Plant Mol Biol Rep 24:255a–255iCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Tatjana Ċosiċ
    • 1
  • Václav Motyka
    • 2
  • Martin Raspor
    • 1
  • Jelena Savić
    • 1
  • Aleksandar Cingel
    • 1
  • Branka Vinterhalter
    • 1
  • Dragan Vinterhalter
    • 1
  • Alena Trávníčková
    • 2
  • Petre I. Dobrev
    • 2
  • Borut Bohanec
    • 3
  • Slavica Ninković
    • 1
  1. 1.Institute for Biological Research “Siniša Stanković”University of BelgradeBelgradeSerbia
  2. 2.Institute of Experimental BotanyAcademy of Sciences of the Czech RepublicPrague 6Czech Republic
  3. 3.Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations