Advertisement

Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 121, Issue 3, pp 519–529 | Cite as

Improvement of Agrobacterium-mediated transformation frequency in multiple modern elite commercial maize (Zea mays L.) inbreds by media modifications

  • Myeong-Je ChoEmail author
  • Jenny Banh
  • Maryanne Yu
  • Jackie Kwan
  • Todd J. Jones
Original Paper

Abstract

The current study describes a robust, high-frequency Agrobacterium-mediated transformation protocol suitable for multiple recalcitrant modern elite commercial maize inbreds employing media modifications with glucose, cupric sulfate and a cytokinin, 6-benzylaminopurine (BAP). An optimal combination of these three key elements in the co-cultivation, resting, and selection media resulted in 4- to 14-fold improvements in transformation frequencies at the T0 plant level of 9.7, 31.9, 9.6 and 10.0 % for PH4CN, PH12BN, PHW0V and PH17R8, respectively. Transformation frequency in PH1CP1 was also improved at the T0 tissue level from 2.5 to 8.3 %. The addition of cupric sulfate and BAP in the co-cultivation medium improved transformation frequency in all inbreds except PH4CN. The use of cupric sulfate and BAP in combination with additional glucose in the selection medium was especially important, significantly improving the transformation frequency in 3 (PH4CN, PHW0V and PH1CP1) out of 5 inbreds by increasing the proliferation of high quality regenerable tissue. It was observed that the amount/ratio of these three components needed to be optimized for each inbred. The results in this study can be applied to optimize the tissue culture response and improve transformation frequency in other recalcitrant elite commercial maize inbreds.

Keywords

Maize elite inbred transformation Agrobacterium Green regenerative tissue medium Copper 6-Benzylaminopurine Glucose 

Abbreviations

BAP

6-Benzylaminopurine

GT

Green regenerative tissue

IE

Immature embryo

moPAT

Maize codon-optimized phosphinothricin acetyltransferase

mPHI-T

Modified PHI-T medium

NSS

Non-stiff stalk

PMI

Phosphomannose isomerase

PPT

Phosphinothricin

QE

Quality event

YFP

Yellow fluorescent protein

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Cho M-J, Jiang W, Lemaux PG (1998) Transformation of recalcitrant barley cultivars through improvement of regenerability and decreased albinism. Plant Sci 138:229–244CrossRefGoogle Scholar
  2. Cho M-J, Buchanan BB, Lemaux PG (1999) Development of transformation systems for monocotyledonous crop species and production of foreign proteins in transgenic barley and wheat seeds. In: Application of transformation technology in plant breeding. 30th Anniversary Korean Breeding Society, Suwon, Korea, November 19, pp 39–53Google Scholar
  3. Cho M-J, Klein TM, Zhao Z-Y (2013) Methods for tissue culture and transformation of sugarcane. US patent application 2013/0055472 A1Google Scholar
  4. Cho M-J, Wu E, Kwan J, Yu M, Banh J, Linn W, Anand A, Li Z, TeRonde S, Register JC III, Jones TJ, Zhao Z-Y (2014) Agrobacterium-mediated high-frequency transformation of an elite commercial maize (Zea mays L.) inbred line. Plant Cell Rep 33:1767–1777CrossRefPubMedGoogle Scholar
  5. D’Halluin K, Bonne E, Bossut M, De Beuckeleer M, Leemans J (1992) Transgenic maize plants by tissue electroporation. Plant Cell 4:1495–1505CrossRefPubMedCentralPubMedGoogle Scholar
  6. Frame BR, Drayton PR, Bagnall SV, Lewnau CJ, Bullock WP, Wilson HM, Dunwell JM, Thompson JA, Wang K (1994) Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation. Plant J 6:941–948CrossRefGoogle Scholar
  7. Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg SEK, Li B, Nettleton DS, Pei D, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22CrossRefPubMedCentralPubMedGoogle Scholar
  8. Frame BR, McMurray JM, Fonger TM, Main ML, Taylor KW, Torney FJ, Paz MM, Wang K (2006) Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts. Plant Cell Rep 25:1024–1034CrossRefPubMedGoogle Scholar
  9. Fromm ME, Morrish F, Armstrong C, Williams R, Thomas J, Klein TM (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8:833–839CrossRefPubMedGoogle Scholar
  10. Golovkin MV, Abraham M, Morocz S, Bottka S, Feher A, Dudits D (1993) Production of transgenic maize plants by direct DNA uptake into embryogenic protoplasts. Plant Sci 90:41–52CrossRefGoogle Scholar
  11. Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O’Brien JV, Chambers SA, Adams WR Jr, Willetts NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618CrossRefPubMedCentralPubMedGoogle Scholar
  12. Ha CD, Lemaux PG, Cho M-J (2001) Stable transformation of a recalcitrant Kentucky bluegrass (Poa pratensis L.) cultivar using mature seed-derived highly regenerative tissues. In Vitro Cell Dev Biol Plant 37:6–11Google Scholar
  13. Huang X, Wei Z (2005) Successful Agrobacterium-mediated genetic transformation of maize elite inbred lines. Plant Cell Tiss Org Cult 83:187–200CrossRefGoogle Scholar
  14. Ishida Y, Satto H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750CrossRefPubMedGoogle Scholar
  15. Ishida Y, Hiei Y, Komari T (2007) Agrobacterium-mediated transformation of maize. Nat Protoc 2(7):1614–1621CrossRefPubMedGoogle Scholar
  16. Kim H-K, Lemaux PG, Buchanan BB, Cho M-J (1999) Reduction of genotype limitation in wheat (Triticum aestivum L.) transformation. In Vitro Cell Dev Biol 35(3 Part 2):43AGoogle Scholar
  17. Lauer, J. 1998. The Wisconsin comparative relative maturity (CRM) system for corn. Field crops 28.31–21, http://corn.agronomy.wisc.edu/AA/A021.aspx
  18. Li Y-C, Ren J, Cho M-J, Zhou S, Kim Y-B, Guo H, Wong JH, Niu H, Kim H-K, Morigasaki S, Lemaux PG, Frick OL, Yin J, Buchanan BB (2009) The level of expression of thioredoxin is linked to fundamental properties and applications of wheat seeds. Mol Plant 2:430–441CrossRefPubMedGoogle Scholar
  19. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  20. Negrotto D, Jolley M, Beer S, Wench AR, Hansen G (2000) The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19:798–803CrossRefGoogle Scholar
  21. Ombori O, Muoma JMO, Machuka J (2013) Agrobacterium-mediated genetic transformation of selected tropical inbred and hybrid maize (Zea mays L.) lines. Plant Cell Tissue Organ Cult 113:11–23CrossRefGoogle Scholar
  22. Sidorov V, Gilbertson L, Addae P, Duncan D (2006) Agrobacterium-mediated transformation of seedling-derived maize callus. Plant Cell Rep 25:320–328CrossRefPubMedGoogle Scholar
  23. Vega JM, Yu W, Kennon AR, Chen X, Zhang ZJ (2008) Improvement of Agrobacterium-mediated transformation in Hi-II maize (Zea mays) using standard binary vectors. Plant Cell Rep 27:297–305CrossRefPubMedGoogle Scholar
  24. Wan Y, Widholm JM, Lemaux PG (1995) Type-I callus as a bombardment target for generating fertile transgenic maize (Zea mays L.). Planta 196:7–14CrossRefGoogle Scholar
  25. Wu E, Lenderts B, Glassman K, Berezowska-Kaniewska M, Christensen H, Asmus T, Zhen S, Chu Y, Cho M-J, Zhao Z-Y (2014) Optimized Agrobacterium-mediated sorghum transformation protocol and molecular data of transgenic sorghum plants. In Vitro Cell Dev Biol Plant 50:9–18Google Scholar
  26. Zhang S, Cho M-J, Koprek T, Bregitzer P, Yun R, Lemaux PG (1999) Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings. Plant Cell Rep 18:959–966CrossRefGoogle Scholar
  27. Zhang S, Williams-Carrier R, Lemaux PG (2002) Transformation of recalcitrant maize elite inbreds using in vitro shoot meristematic cultures induced from germinated seedlings. Plant Cell Rep 21:263–270CrossRefGoogle Scholar
  28. Zhao ZY, Gu W, Cai T, Tagliani LA, Hondred DA, Bond D, Krell S, Rudert ML, Bruce WB, Pierce DA (1998) Molecular analysis of T0 plants transformed by Agrobacterium and comparison of Agrobacterium-mediated transformation with bombardment transformation in maize. Maize Genet Coop Newslett 72:34–37Google Scholar
  29. Zhao ZY, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44:789–798CrossRefPubMedGoogle Scholar
  30. Zhao Z, Gu W, Cai T, Tagliani L, Hondred D, Bond D, Schroeder S, Rudert M, Pierce D (2001) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breed 8:323–333CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Myeong-Je Cho
    • 1
    Email author
  • Jenny Banh
    • 1
  • Maryanne Yu
    • 1
  • Jackie Kwan
    • 1
  • Todd J. Jones
    • 2
  1. 1.DuPont Agricultural BiotechnologyDuPont-PioneerHaywardUSA
  2. 2.DuPont Agricultural BiotechnologyDuPont-PioneerJohnstonUSA

Personalised recommendations