Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 118, Issue 3, pp 519–530 | Cite as

In vitro co-culture of Solanum tuberosum hairy roots with Meloidogyne chitwoodi: structure, growth and production of volatiles

  • Jorge M. S. Faria
  • Inês Sena
  • Carla M. Maleita
  • Inês Vieira da Silva
  • Lia Ascensão
  • Isabel Abrantes
  • Richard N. Bennett
  • Manuel Mota
  • A. Cristina Figueiredo
Original Paper


Meloidogyne spp., commonly known as root-knot nematodes (RKNs), are economically important plant sedentary endoparasites that cause galls on susceptible hosts. The Columbia root-knot nematode (CRKN), M. chitwoodi, is a quarantine A2 type pest by the European and Mediterranean Plant Protection Organization since 1998. This nematode has been found associated with economically important crops such as potato and tomato, causing severe damage and making the agricultural products unacceptable for the fresh market and food processing. In vitro co-culture of host and parasite offers an advantageous experimental system for studying plant-RKN interactions. The structure, growth and production of volatiles of Solanum tuberosum hairy roots (HR) and of S. tuberosum HR/CRKN co-cultures were compared. HR were induced by inoculation of aseptic potato tuber segments with Rhizobium rhizogenes. Co-cultures were initiated by inoculating HR with sterilized CRKN eggs. Infection with CRKN induced the RKN symptomatology in the HR and several nematode life stages were observed by light and scanning electron microscopy. Potato HR and HR/CRKN co-cultures exhibited similar growth patterns, evaluated by measuring fresh and dry weight and by the dissimilation method. Volatiles, isolated by distillation–extraction and analyzed by gas chromatography (GC) and gas chromatography coupled to mass spectrometry, revealed that palmitic acid (37–52 %), n–pentadecanal (10–16 %) and linoleic acid (2–16 %) were the main constitutive components of S. tuberosum HR, and of the HR/CRKN co-cultures (24–44, 8–22 and 4–18 %, respectively). S. tuberosum HR/CRKN co-cultures can be considered a suitable biotechnological tool to study RKN infection mechanism by mimicking what occurs under field conditions.


Plant biotechnology Columbia root-knot nematode Potato Hairy root structure Root gall structure Volatiles 



Specific growth rate


Columbia root-knot nematode (Meloidogyne chitwoodi)


Days after inoculation


Doubling time


Dry weight


European and Mediterranean Plant Protection Organization


Fresh weight


Gas chromatography


Gas chromatography coupled to Mass Spectrometry


Mercuric chloride


Hairy roots


Nematode second-stage juveniles


Light microscopy


Sodium hypochlorite


Osmium tetroxide


Periodic acid–Schiff’s reagent


Retention index


Root-knot nematode


Scanning electron microscopy


Schenk and Hildebrandt medium





The authors would like to thank Dr Aiden C. Parte (LPSN–, Prof. Dr Leonor Faleiro (Universidade do Algarve, Faculdade de Ciências e Tecnologia, CBV, IBB) and Dr Daniela Pinto (Universidade de Lisboa, Faculdade de Ciências, Laboratório de Biotecnologia e Microbiologia, BioFIG) for providing information on R. rhizogenes recent taxonomy; and Dr Rian Stekelenburg from HZPC Holland B.V. for providing potato cultivar nomenclature. Jorge Faria is grateful to the Fundação para a Ciência e a Tecnologia (FCT) for the PhD grant SFRH/BD/43738/2008. This study was partially funded by FCT, under Pest-OE/EQB/LA0023/2011 and research contract PTDC/AGR-CFL/117026/2010.


  1. Andrés MF, Gonzáles-Coloma A, Sanz J, Burillo J, Sainz P (2012) Nematicidal activity of essential oils: a review. Phytochem Rev 11:371–390. doi: 10.1007/s11101-012-9263-3 CrossRefGoogle Scholar
  2. Ascensão L, Francisco A, Cotrim H, Pais MS (2005) Comparative structure of the labellum in Ophrys fusca and O. lutea (Orchidaceae). Am J Bot 92:1059–1067. doi: 10.3732/ajb.92.7.1059 PubMedCrossRefGoogle Scholar
  3. Berg RH, Taylor CG (2009) Cell biology of plant nematode parasitism. Plant cell monographs, vol 15. Springer, BerlinGoogle Scholar
  4. Bonga JM, Durzan DJ (1982) Tissue culture in forestry. Forestry sciences, vol 5. Martinus Nijhoff/Dr W. Junk Publishers, The HagueGoogle Scholar
  5. Bull CT, De Boer SH, Denny TP, Firrao G, Fischer-Le Saux M, Saddler GS, Scortichini M, Stead DE, Takikawa Y (2010) Comprehensive list of names of plant pathogenic bacteria, 1980–2007. J Plant Pathol 92:551–592Google Scholar
  6. Chitwood DJ (2002) Phytochemical based strategies for nematode control. Annu Rev Phytopathol 40:221–249. doi: 10.1146/annurev.phyto.40.032602.130045 PubMedCrossRefGoogle Scholar
  7. Chitwood DJ (2003) Nematicides. In: Plimmer JR (ed) Encyclopedia of agrochemicals, vol 3. Wiley, New York, pp 1104–1115Google Scholar
  8. Conceição IL, Cunha MJM, Feio G, Correia M, Santos MCV, Abrantes IMO, Santos MSNA (2009) Root-knot nematodes, Meloidogyne spp., on potato in Portugal. Nematology 11:311–313CrossRefGoogle Scholar
  9. Costa MM (2005) Raízes transgénicas de Levisticum officinale como sistema modelo para o estudo da produção de voláteis. M.Sc thesis. Faculdade de Ciências da Universidade de LisboaGoogle Scholar
  10. Desjardins AE, McCormick SP, Plaisted RL, Brodie BB (1997) Association between solavetivone production and resistance to Globodera rostochiensis in potato. J Agric Food Chem 45:2322–2326. doi: 10.1021/jf960830p CrossRefGoogle Scholar
  11. Dhakulkar A, Ganapathi TR, Bhargava S, Bapat VA (2005) Induction of hairy roots in Gmelina arborea Roxb. and production of verbascoside in hairy roots. Plant Sci 169:812–818. doi: 10.1016/j.plantsci.2005.05.014 CrossRefGoogle Scholar
  12. Edens RM, Anand SC, Bolla RI (1995) Enzymes of the phenylpropanoid pathway in soybean infected with Meloidogyne incognita or Heterodera glycines. J Nematol 27:292–303PubMedCentralPubMedGoogle Scholar
  13. EPPO (2012) Data sheets on quarantine pests: Meloidogyne chitwoodi. Accessed 15 March 2013
  14. Faria JMS, Nunes IS, Figueiredo AC, Pedro LG, Trindade H, Barroso JG (2009) Biotransformation of menthol and geraniol by hairy root cultures of Anethum graveolens: effect on growth and volatile components. Biotechnol Lett 31:897–903. doi: 10.1007/s10529-009-9934-3 PubMedCrossRefGoogle Scholar
  15. Feder N, O’Brien TP (1968) Plant microtechnique: some principles and new methods. Am J Bot 55:123–142CrossRefGoogle Scholar
  16. Ferris H, Carlson HL, Viglierchio DR, Westerdahl BB, Wu FW, Anderson CE, Juurma A, Kirby DW (1993) Host status of selected crops to Meloidogyne chitwoodi. J Nematol 25:849–857PubMedCentralPubMedGoogle Scholar
  17. Figueiredo AC, Pais MS (1994) Ultrastructural aspects of the glandular cells from the secretor trichomes and from cell suspension cultures of Achillea millefolium L. ssp. millefolium. Ann Bot-London 74:179–190CrossRefGoogle Scholar
  18. Figueiredo AC, Barroso JG, Pedro LG, Scheffer JJC (2006) Potentialities of hairy root cultures for in vitro essential oil production. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology. Global Science Books Ltd., Middlesex. pp 478–486Google Scholar
  19. Geraldes DMA (2010) Biotransformação de monoterpenos por raízes transgénicas de Anethum graveolens. M.Sc. Thesis. Faculdade de Ciências da Universidade de LisboaGoogle Scholar
  20. Giri A, Narasu ML (2000) Transgenic hairy roots: recent trends and applications. Biotechnol Adv 18:1–22. doi: 10.1016/S0734-9750(99)00016-6 PubMedCrossRefGoogle Scholar
  21. Golden AM, O’Bannon JH, Santo GS, Finley AM (1980) Description and SEM observations of Meloidogyne chitwoodi n. sp. (Meloidogynidae), a root-knot nematode on potato in the Pacific Northwest. J Nematol 12:319–327PubMedCentralPubMedGoogle Scholar
  22. Griffin GD (1985) Host-Parasite relationship of Meloidogyne chitwoodi on potato. J Nematol 17:395–399PubMedCentralPubMedGoogle Scholar
  23. Hansen E, Harper G, McPherson MJ (1996) Differential expression patterns of the wound-inducible transgene wun1-uidA in potato roots following infection with either cyst or root knot nematodes. Physiol Mol Plant P 48:161–170.  10.1006/pmpp.1996.0014
  24. Hussey RS, Barker KR (1973) A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis Rep 57:1025–1028Google Scholar
  25. Khoshkhoo N, Hedin PA, McCarty JC (1994) Terpenoid aldehydes in root-knot nematode susceptible and resistant cotton plants. J Agric Food Chem 42:204–208. doi: 10.1021/jf00037a037 CrossRefGoogle Scholar
  26. Komaraiah P, Reddy GV, Reddy PS, Raghavendra AS, Ramakrishna SV, Reddanna P (2003) Enhanced production of antimicrobial sesquiterpenes and lipoxygenase metabolites in elicitor-treated hairy root cultures of Solanum tuberosum. Biotechnol Lett 25:593–597. doi: 10.1023/A:1023038804556 PubMedCrossRefGoogle Scholar
  27. Kondo O, Honda H, Taya M, Kobayashi T (1989) Comparison of growth properties of carrot hairy root in various bioreactors. Appl Microbiol Biotechnol 32:291–294. doi: 10.1007/BF00184976 CrossRefGoogle Scholar
  28. Kumar A, Forrest JMS (1990) Reproduction of Globodera rostochiensis on transformed roots of Solanum tuberosum cv. Desiree. J Nematol 22:395–398PubMedCentralPubMedGoogle Scholar
  29. Li J, Todd TC, Lee J, Trick HN (2011) Biotechnological application of functional genomics towards plant-parasitic nematode control. Plant Biotechnol J 9:936–944. doi: 10.1111/j.1467-7652.2011.00601.x PubMedCrossRefGoogle Scholar
  30. Likens ST, Nickerson GB (1964) Detection of certain Hop oil constituents in brewing products. Am Soc Brew Chem Proc 5:13–19Google Scholar
  31. Maheshwari R (1991) Applications of plant tissue and cell culture in the study of physiology of parasitism. Proc Indian Acad Plant Sci 69:152–172Google Scholar
  32. Maldonado-Mendoza IE, Ayora-Talavera T, Loyola-Vargas VM (1993) Establishment of hairy root cultures of Datura stramonium. Plant Cell Tiss Org 33:321–329. doi: 10.1007/BF02319018 CrossRefGoogle Scholar
  33. McClure MA, Kruk TH, Misaghi I (1973) A method for obtaining quantities of clean Meloidogyne eggs. J Nematol 5:230PubMedCentralPubMedGoogle Scholar
  34. Mehrara E, Forssell-Aronsson E, Ahlman H, Bernhardt P (2007) Specific growth rate versus doubling time for quantitative characterization of tumor growth rate. Cancer Res 67:3970–3975. doi: 10.1158/0008-5472.CAN-06-3822 PubMedCrossRefGoogle Scholar
  35. Mitkowski NA, Abawi GS (2002) Monoxenic maintenance and reproduction of root-knot nematode (Meloidogyne hapla) on multiple-species in vitro root culture systems. Plant Cell Rep 21:14–23. doi: 10.1007/s00299-002-0468-6 CrossRefGoogle Scholar
  36. Mojtahedi H, Santo GS, Wilson JH (1988) Host tests to differentiate Meloidogyne chitwoodi races 1 and 2 and M. hapla. J Nematol 20:468–473PubMedCentralPubMedGoogle Scholar
  37. Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht M, Xu G, Jakobsen I, Levy A, Amrhein N, Bucher M (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J 42:236–250. doi: 10.1111/j.1365-313X.2005.02364.x PubMedCrossRefGoogle Scholar
  38. Nunes IS, Faria JMS, Figueiredo AC, Pedro LG, Trindade H, Barroso JG (2009) Menthol and geraniol biotransformation and glycosylation capacity of Levisticum officinale hairy roots. Planta Med 75:387–391. doi: 10.1055/s-0028-1112217 PubMedCrossRefGoogle Scholar
  39. O’Bannon JH, Santo GS, Nyczepir AP (1982) Host range of the Columbian root-knot nematode. Plant Dis 66:1045–1048CrossRefGoogle Scholar
  40. OEPP/EPPO (2009) Meloidogyne chitwoodi and Meloidogyne fallax. EPPO Bull 39:5–17CrossRefGoogle Scholar
  41. Oksman-Caldentey KM, Hiltunen R (1996) Transgenic crops for improved pharmaceutical products. Field Crop Res 45:57–69. doi: 10.1016/0378-4290(95)00059-3 CrossRefGoogle Scholar
  42. Pak HK, Sim JS, Rhee Y, Ko HR, Ha SH, Yoon MS, Kang CH, Lee S, Kim YH, Hahn BS (2009) Hairy root induction in Oriental melon (Cucumis melo) by Agrobacterium rhizogenes and reproduction of the root-knot nematode (Meloidogyne incognita). Plant Cell Tiss Organ Cult 98:219–228. doi: 10.1007/s11240-009-9556-4 CrossRefGoogle Scholar
  43. Perry RN, Moens M, Starr JL (2009) Root-knot nematodes. CAB International, UKCrossRefGoogle Scholar
  44. Santo GS, O’Bannon JH (1981) Effect of soil temperature on the pathogenicity and reproduction of Meloidogyne chitwoodi and M. hapla on Russet Burbank potato. J Nematol 13:483–486PubMedCentralPubMedGoogle Scholar
  45. Santo GS, Finley AM, Golden AM (1980) Occurrence and host range of a new root-knot nematode (Meloidogyne chitwoodi) in the Pacific Northwest. Plant Dis 64:951–952. doi: 10.1094/PD-64-951 CrossRefGoogle Scholar
  46. Santos PM (1997) Raízes transformadas de Pimpinella anisum: morfologia, crescimento e caracterização da produção de voláteis. M.Sc. Thesis. Faculdade de Ciências da Universidade de LisboaGoogle Scholar
  47. Santos PM, Figueiredo AC, Oliveira MM, Barroso JG, Pedro LG, Deans SG, Younus AKM, Scheffer JC (1998) Essential oils from hairy root cultures and from fruits and roots of Pimpinela anisum. Phytochemistry 48:455–460. doi: 10.1016/S0031-9422(98)00022-3 CrossRefGoogle Scholar
  48. Schenk UR, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204. doi: 10.1139/b72-026 CrossRefGoogle Scholar
  49. Schripsema J, Meijer AH, Iren F, ten Hoopen HJG, Verpoorte R (1990) Dissimilation curves as a simple method for the characterization of growth of plant cell suspension cultures. Plant Cell Tiss Org 22:55–64. doi: 10.1007/BF00043699 Google Scholar
  50. Valancin A, Srinivasan B, Rivoal J, Jolicoeur M (2013) Analyzing the effect of decreasing cytosolic triosephosphate isomerase on Solanum tuberosum hairy root cells using a kinetic–metabolic model. Biotechnol Bioeng 110:924–935. doi: 10.1002/bit.24747 PubMedCrossRefGoogle Scholar
  51. Veech JA (1978) An apparent relationship between methoxy-substituted terpenoid aldehydes and the resistance of cotton to Meloidogyne incognita. Nematologica 24:81–87. doi: 10.1163/187529278X00092 CrossRefGoogle Scholar
  52. Verdejo S, Jafee BA, Mankau R (1988) Reproduction of Meloidogyne javanica on plant roots genetically transformed by Agrobacterium rhizogenes. J Nematol 20:599–604PubMedCentralPubMedGoogle Scholar
  53. Vieira dos Santos MC, Curtis RHC, Abrantes IMO (2013) Effect of plant elicitors on the reproduction of the root-knot nematode Meloidogyne chitwoodi on susceptible hosts. Eur J Plant Pathol 136:193–202. doi: 10.1007/s10658-012-0155-6 CrossRefGoogle Scholar
  54. Wiśniewska A, Dabrowska-Bronk J, Szafranski K, Fudali S, Swiecicka M, Czarny M, Wilkowska A, Morgiewicz K, Matusiak J, Sobczak M, Filipecki M (2013) Analysis of tomato gene promoters activated in syncytia induced in tomato and potato hairy roots by Globodera rostochiensis. Transgenic Res 22:557–569. doi: 10.1007/s11248-012-9665-4 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jorge M. S. Faria
    • 1
  • Inês Sena
    • 1
  • Carla M. Maleita
    • 2
  • Inês Vieira da Silva
    • 1
  • Lia Ascensão
    • 1
  • Isabel Abrantes
    • 3
  • Richard N. Bennett
    • 4
  • Manuel Mota
    • 5
    • 6
  • A. Cristina Figueiredo
    • 1
  1. 1.Universidade de Lisboa, Faculdade de Ciências de Lisboa, DBV, IBB, Centro de Biotecnologia Vegetal, C2, Campo Grande, 1749-016 Lisboa, PortugalLisbonPortugal
  2. 2.CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, 3030-790 Coimbra, PortugalCoimbraPortugal
  3. 3.IMAR-CMA, Departamento de Ciências da Vida, Universidade de Coimbra, 3004-517 Coimbra, PortugalCoimbraPortugal
  4. 4.Universidade de Trás-os-Montes e Alto DouroVila RealPortugal
  5. 5.NemaLab, ICAAM-Instituto de Ciências Agrárias e Ambientais MediterrânicasUniversidade de ÉvoraÉvoraPortugal
  6. 6.INIAV/Unidade Estratégica de Investigação e Serviços de Sistemas Agrários e Florestais e Sanidade VegetalOeirasPortugal

Personalised recommendations