Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 118, Issue 2, pp 245–256 | Cite as

How does exogenously applied cytokinin type affect growth and endogenous cytokinins in micropropagated Merwilla plumbea?

  • Adeyemi O. Aremu
  • Lenka Plačková
  • Michael W. Bairu
  • Ondřej Novák
  • Lucie Plíhalová
  • Karel Doležal
  • Jeffrey F. Finnie
  • Johannes Van Staden
Original Paper


Merwilla plumbea (Lindl.) Speta is a popular and highly sought after South African medicinal plant with diverse therapeutic values. Using Ultra performance liquid chromatography (UPLC), the effect of five cytokinins (CKs) [either isoprenoid = N 6-isopentenyladenine (iP) or aromatic = benzyladenine, meta-topolin (mT), meta-topolin riboside (mTR), and 6-(3-methoxybenzylamino)-9-tetrahydropyran-2-ylpurine] MemTTHP on growth and level of endogenous CKs during micropropagation and acclimatization stages was evaluated. Aromatic CK (mT/mTR) elicited the highest shoot proliferation (7–8 shoots per explant) during in vitro culture. Following acclimatization, iP-treated and the control plants were healthier with longer leaves, roots and higher fresh weight when compared to aromatic CKs. A total of 37 (22 isoprenoid and 15 aromatic) CK variants were quantified in both in vitro and acclimatized plants. Based on their metabolic function, these were grouped into five types including free bases, ribosides, ribotides, O- and 9-glucosides. In addition to enhancing our understanding of the hormone physiology in M. plumbea, the current findings are discussed in line with the effect of the exogenously applied CK on the observed differences in growth before and after the important stage of acclimatization. The observed dynamics in endogenous CK provide an avenue to manipulate in vitro growth and development of investigated species.


Conservation Medicinal plant Micropropagation Phytohormones Plant growth regulators 



Analysis of variance


N 6-Benzyladenine


N 6-Benzyladenine-9-glucoside


N 6-Benzyladenine riboside


N 6-Benzyladenosine-5′-monophosphate










cis-Zeatin riboside


cis-Zeatin riboside-5′-monophosphate


cis-Zeatin-O-glucoside riboside








Dihydrozeatin riboside


Dihydrozeatin riboside-5′-monophosphate


Dihydrozeatin-O-glucoside riboside


N 6-Isopentenyladenine


N 6-Isopentenyladenine-9-glucoside


N 6-Isopentenyladenosine


N 6-Isopentenyladenosine-5′-monophosphate






Kinetin riboside


meta-Methoxy topolin




Murashige and Skoog medium






meta-Topolin riboside






ortho-Topolin riboside


Plant growth regulator


Photosynthetic photon flux density












trans-Zeatin riboside


trans-Zeatin riboside-5′-monophosphate


trans-Zeatin-O-glucoside riboside


Ultra performance liquid chromatography



A.O.A. was supported by the Claude Leon Foundation, South Africa. L.P., O.N., L.S. and K.D. were supported by the Ministry of Education Youth and Sports, Czech Republic (grant LO1204 from the National Program of Sustainability and Agricultural Research) as well as by IGA of Palacký University (IGA_PrF_2014006). We thank Dr. W.A. Stirk for providing valuable suggestions towards improving the manuscript.

Supplementary material

11240_2014_477_MOESM1_ESM.xls (112 kb)
Supplementary material 1 (XLS 112 kb)


  1. Amoo SO, Aremu AO, Moyo M, Van Staden J (2012) Antioxidant and acetylcholinesterase-inhibitory properties of long-term stored medicinal plants. BMC Complem Alternat Med 12:87CrossRefGoogle Scholar
  2. Aremu AO, Bairu MW, Doležal K, Finnie JF, Van Staden J (2012a) Topolins: a panacea to plant tissue culture challenges? Plant Cell, Tissue Organ Cult 108:1–16CrossRefGoogle Scholar
  3. Aremu AO, Bairu MW, Szüčová L, Doležal K, Finnie JF, Van Staden J (2012b) Assessment of the role of meta-topolins on in vitro produced phenolics and acclimatization competence of micropropagated ‘Williams’ banana. Acta Physiol Plant 34:2265–2273CrossRefGoogle Scholar
  4. Aremu AO, Gruz J, Šubrtová M, Szüčová L, Doležal K, Bairu MW, Finnie JF, Van Staden J (2013) Antioxidant and phenolic acid profiles of tissue cultured and acclimatized Merwilla plumbea plantlets in relation to the applied cytokinins. J Plant Physiol 170:1303–1308PubMedCrossRefGoogle Scholar
  5. Aremu AO, Plačková L, Bairu MW, Novák O, Szüčová L, Doležal K, Finnie JF, Van Staden J (2014) Endogenous cytokinin profiles of tissue-cultured and acclimatized ‘Williams’ bananas subjected to different aromatic cytokinin treatments. Plant Sci 214:88–98PubMedCrossRefGoogle Scholar
  6. Arigita L, Fernández B, González A, Tamés RS (2005) Effect of the application of benzyladenine pulse on organogenesis, acclimatisation and endogenous phytohormone content in kiwi explants cultured under autotrophic conditions. Plant Physiol Biochem 43:161–167PubMedCrossRefGoogle Scholar
  7. Arnau JA, Tadeo FR, Guerri J, Primo-Millo E (1999) Cytokinins in peach: endogenous levels during early fruit development. Plant Physiol Biochem 37:741–750CrossRefGoogle Scholar
  8. Auer CA (1997) Cytokinin conjugation: recent advances and patterns in plant evolution. Plant Growth Regul 23:17–32CrossRefGoogle Scholar
  9. Bairu MW, Novák O, Doležal K, Van Staden J (2011) Changes in endogenous cytokinin profiles in micropropagated Harpagophytum procumbens in relation to shoot-tip necrosis and cytokinin treatments. Plant Growth Regul 63:105–114CrossRefGoogle Scholar
  10. Barciszewski J, Massino F, Clark BFC (2007) Kinetin—a multiactive molecule. Int J Biol Macromol 40:182–192PubMedCrossRefGoogle Scholar
  11. Baroja-Fernández E, Aguirreolea J, Martínková H, Hanus J, Strnad M (2002) Aromatic cytokinins in micropropagated potato plants. Plant Physiol Biochem 40:217–224CrossRefGoogle Scholar
  12. Baskaran P, Ncube B, Van Staden J (2012) In vitro propagation and secondary product production by Merwilla plumbea (Lindl.) Speta. Plant Growth Regul 67:235–245CrossRefGoogle Scholar
  13. Brzobohatý B, Moore I, Palme K (1994) Cytokinin metabolism: implications for regulation of plant growth and development. Plant Mol Biol 26:1483–1497PubMedCrossRefGoogle Scholar
  14. Chen C, Ertl JR, Leisner SM, Chang C-C (1985) Localization of cytokinin biosynthetic sites in pea plants and carrot roots. Plant Physiol 78:510–513PubMedCrossRefPubMedCentralGoogle Scholar
  15. Cuesta C, Novák O, Ordás RJ, Fernández B, Strnad M, Doležal K, Rodríguez A (2012) Endogenous cytokinin profiles and their relationships to between-family differences during adventitious caulogenesis in Pinus pinea cotyledons. J Plant Physiol 169:1830–1837PubMedCrossRefGoogle Scholar
  16. Doležal K, Popa I, Krystof V, Spíchal L, Fojtíková M, Holub J, Lenobel R, Schmülling T, Strnad M (2006) Preparation and biological activity of 6-benzylaminopurine derivatives in plants and human cancer cells. Bioorg Med Chem 14:875–884PubMedCrossRefGoogle Scholar
  17. Doležal K, Popa I, Hauserová E, Spíchal L, Chakrabarty K, Novák O, Kryštof V, Voller J, Holub J, Strnad M (2007) Preparation, biological activity and endogenous occurrence of N6-benzyladenosines. Bioorg Med Chem 15:3737–3747PubMedCrossRefGoogle Scholar
  18. Frébort I, Kowalska M, Hluska T, Frébortová J, Galuszka P (2011) Evolution of cytokinin biosynthesis and degradation. J Exp Bot 62:2431–2452PubMedCrossRefGoogle Scholar
  19. Gaba VP (2005) Plant growth regulators in plant tissue culture and development. In: Trigiano RN, Gray DJ (eds) Plant development and biotechnology. CRC Press, New York, pp 87–100Google Scholar
  20. Gajdošová S, Spíchal L, Kamínek M, Hoyerová K, Novák O, Dobrev PI, Galuszka P, Klíma P, Gaudinová A, Žižková E, Hanuš J, Dančák M, Trávníček B, Pešek B, Krupička M, Vaňková R, Strnad M, Motyka V (2011) Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J Exp Bot 62:2827–2840PubMedCrossRefGoogle Scholar
  21. Hazarika BN (2006) Morpho-physiological disorders in in vitro culture of plants. Sci Hortic 108:105–120CrossRefGoogle Scholar
  22. Holub J, Hanuš J, Hanke DE, Strnad M (1998) Biological activity of cytokinins derived from ortho- and meta-hydroxybenzyladenine. Plant Growth Regul 26:109–115CrossRefGoogle Scholar
  23. Ivanova M, Novák O, Strnad M, Van Staden J (2006) Endogenous cytokinins in shoots of Aloe polyphylla cultured in vitro in relation to hyperhydricity, exogenous cytokinins and gelling agents. Plant Growth Regul 50:219–230CrossRefGoogle Scholar
  24. Kamínek M, Motyka V, Vaková R (1997) Regulation of cytokinin content in plant cells. Physiol Plant 101:689–700CrossRefGoogle Scholar
  25. Klemš M, Slámová Z, Motyka V, Malbeck J, Trávníčková A, Macháčková I, Holík J, Procházka S (2011) Changes in cytokinin levels and metabolism in tobacco (Nicotiana tabacum L.) explants during in vitro shoot organogenesis induced by trans-zeatin and dihydrozeatin. Plant Growth Regul 65:427–437CrossRefGoogle Scholar
  26. Krikorian AD (1995) Hormones in tissue culture and micropropagation. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer Academic, Dordrecht, pp 774–796CrossRefGoogle Scholar
  27. Kudo T, Kiba T, Sakakibara H (2010) Metabolism and long-distance transloction of cytokinins. J Integ Plant Biol 52:53–60CrossRefGoogle Scholar
  28. Letham DS, Palni LMS (1983) The biosynthesis and metabolism of cytokinins. Ann Rev Plant Physiol 34:163–197CrossRefGoogle Scholar
  29. Lexa M, Genkov T, Malbeck J, Macháčková I, Brzobohatý B (2003) Dynamics of endogenous cytokinin pools in tobacco seedlings: a modelling approach. Ann Bot 91:585–597PubMedCrossRefGoogle Scholar
  30. Malá J, Máchová P, Cvrčková H, Karady M, Novák O, Mikulík J, Hauserová E, Greplová J, Strnad M, Doležal K (2009) Micropropagation of wild service tree (Sorbus torminalis [L.] Crantz): the regulative role of different aromatic cytokinins during organogenesis. J Plant Growth Regul 28:341–348CrossRefGoogle Scholar
  31. McCartan SA, Van Staden J (1998) Micropropagation of the medicinal plant, Scilla natalensis Planch. Plant Growth Regul 25:177–180CrossRefGoogle Scholar
  32. Montalbán IA, Novák O, Rolčik J, Strnad M, Moncaleán P (2013) Endogenous cytokinin and auxin profiles during in vitro organogenesis from vegetative buds of Pinus radiata adult trees. Physiol Plant 148:214–231PubMedCrossRefGoogle Scholar
  33. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  34. Novák O, Tarkowski P, Tarkowská D, Dolezal K, Lenobel R, Strnad M (2003) Quantitative analysis of cytokinins in plants by liquid chromatography-single-quadrupole mass spectrometry. Anal Chim Acta 480:207–218CrossRefGoogle Scholar
  35. Novák O, Hauserová E, Amakorová P, Doležal K, Strnad M (2008) Cytokinin profiling in plant tissues using ultra-performance liquid chromatography—electrospray tandem mass spectrometry. Phytochemistry 69:2214–2224PubMedCrossRefGoogle Scholar
  36. Sáenz L, Azpeitia A, Oropeza C, Jones LH, Fuchsova K, Spichal L, Strnad M (2010) Endogenous cytokinins in Cocos nucifera L. in vitro cultures obtained from plumular explants. Plant Cell Rep 29:1227–1234PubMedCrossRefGoogle Scholar
  37. Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Ann Rev Plant Biol 57:431–449CrossRefGoogle Scholar
  38. Spíchal L, Rakova NY, Riefler M, Mizuno T, Romanov GA, Strnad M, Schmülling T (2004) Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol 45:1299–1305PubMedCrossRefGoogle Scholar
  39. Stirk WA, Van Staden J (2010) Flow of cytokinins through the environment. Plant Growth Regul 62:101–116CrossRefGoogle Scholar
  40. Stirk WA, Novák O, Václavíková K, Tarkowski P, Strnad M, Van Staden J (2008) Spatial and temporal changes in endogenous cytokinins in developing pea roots. Planta 227:1279–1289PubMedCrossRefGoogle Scholar
  41. Strnad M (1997) The aromatic cytokinins. Physiol Plant 101:674–688CrossRefGoogle Scholar
  42. Svacinova J, Novak O, Plackova L, Lenobel R, Holik J, Strnad M, Dolezal K (2012) A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Med 8:17Google Scholar
  43. Szücová L, Spíchal L, Doležal K, Zatloukal M, Greplová J, Galuszka P, Krystof V, Voller J, Popa I, Massino FJ, Jørgensen J-E, Strnad M (2009) Synthesis, characterization and biological activity of ring-substituted 6-benzylamino-9-tetrahydropyran-2-yl and 9-tetrahydrofuran-2-ylpurine derivatives. Bioorg Med Chem 17:1938–1947PubMedCrossRefGoogle Scholar
  44. Tarkowská D, Filek M, Biesaga-Kościelniak J, Marcińska I, Macháčková I, Krekule J, Strnad M (2012) Cytokinins in shoot apices of Brassica napus plants during vernalization. Plant Sci 187:105–112PubMedCrossRefGoogle Scholar
  45. Valero-Aracama C, Kane M, Wilson S, Philman N (2010) Substitution of benzyladenine with meta-topolin during shoot multiplication increases acclimatization of difficult- and easy-to-acclimatize sea oats (Uniola paniculata L.) genotypes. Plant Growth Regul 60:43–49CrossRefGoogle Scholar
  46. Van Staden J, Crouch NR (1996) Benzyladenine and derivatives—their significance and interconversion in plants. Plant Growth Regul 19:153–175CrossRefGoogle Scholar
  47. Von Schwartzenberg K, Nunez MF, Blaschke H, Dobrev PI, Novak O, Motyka V, Strnad M (2007) Cytokinins in the bryophyte Physcomitrella patens: analyses of activity, distribution, and cytokinin oxidase/dehydrogenase overexpression reveal the role of extracellular cytokinins. Plant Physiol 145:786–800CrossRefGoogle Scholar
  48. Werbrouck SPO, Strnad M, Van Onckelen HA, Debergh PC (1996) Meta-topolin, an alternative to benzyladenine in tissue culture? Physiol Plant 98:291–297CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Adeyemi O. Aremu
    • 1
  • Lenka Plačková
    • 2
  • Michael W. Bairu
    • 1
    • 3
  • Ondřej Novák
    • 2
  • Lucie Plíhalová
    • 2
  • Karel Doležal
    • 2
  • Jeffrey F. Finnie
    • 1
  • Johannes Van Staden
    • 1
  1. 1.Research Centre for Plant Growth and Development, School of Life SciencesUniversity of KwaZulu-NatalPietermaritzburg, ScottsvilleSouth Africa
  2. 2.Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of SciencePalacký University and Institute of Experimental Botany, Academy of Sciences of Czech RepublicOlomouc-HoliceCzech Republic
  3. 3.Institute for Commercial Forestry ResearchPietermaritzburg, ScottsvilleSouth Africa

Personalised recommendations