Sonication and ultrasound: impact on plant growth and development

  • Jaime A. Teixeira da SilvaEmail author
  • Judit DobránszkiEmail author


Plant biotechnology, and plant tissue culture in particular, could benefit from new means to stimulate plant growth and development. Although the number of studies is still limited, there is evidence that sonication using low frequencies of sound (as little as a few dozen Hz) to as high as ultrasound (several dozen kHz) may increase organogenesis. In this brief review, we look at those examples in detail and explore how sound influences growth and development. Where available, we try to offer a mechanism by which sound affects or influences plant growth.


Frequency (Hz) Sonication Sound waves Ultrasound 







Reactive oxygen species


Sonication-assisted Agrobacterium-mediated transformation


Conflict of interest

The authors declare no conflicts of interest, financial or other.

Glossary (simplified from Wikipedia)

Sound intensity

The sound power (a measure of sound energy E per time t unit) per unit area. Its unit is W/m2

Sound frequency

The number of repetitions per unit time of a complete waveform. Its unit is hertz (Hz)

Sound pressure level

It is measured in decibels (dB) above a standard reference level


  1. Ananthakrishnan G, Xia X, Amutha S, Singer S, Muruganantham M, Yablomsky S, Fisher E, Gaba V (2007) Ultrasonic treatment stimulates multiple shoot regeneration and explant enlargement in recalcitrant squash cotyledon explants in vitro. Plant Cell Rep 26:267–276PubMedCrossRefGoogle Scholar
  2. Beranová M, Rakouský S, Vávrová Z, Skalický T (2008) Sonication assisted Agrobacterium-mediated transformation enhances the transformation efficiency in flax (Linum usitatissimum L.). Plant Cell Tiss Organ Cult 94:253–259CrossRefGoogle Scholar
  3. Chen B, Huang J, Wang J, Huang L (2008) Ultrasound effects on the antioxidative defense systems of Porphyridium cruentum. Colloids Surf B: Biointerfaces 61:88–92PubMedCrossRefGoogle Scholar
  4. Chopra R, Aparna P, Saini R (2012) Use of sonication and vacuum infiltration for Agrobacterium-mediated transformation of an Indian lentil (Lens culinaris Medik.) cultivar. Sci Hortic 143:127–134CrossRefGoogle Scholar
  5. Collins ME, Foreman JEK (2001) The effect of sound on the growth of plants. Can Acoust 29(2):3–8Google Scholar
  6. Creath K, Schwartz GE (2004) Measuring effects of music, noise, and healing energy using a seed germination bioassay. J Alt Compl Med 10(1):113–122CrossRefGoogle Scholar
  7. Dutta I, Kottackal M, Tumimbang E, Tajima H, Zaid A, Blumwald E (2013) Sonication-assisted efficient Agrobacterium-mediated genetic transformation of the multipurpose woody desert scrub Leptadenia pyrotechnica. Plant Cell Tiss Organ Cult 112:289–301CrossRefGoogle Scholar
  8. Gagliano M (2013) Green symphonies: a call for studies on acoustic communication in plants. Behav Ecol 24(4):789–796PubMedCentralPubMedCrossRefGoogle Scholar
  9. Gagliano M, Renton M (2013) Love thy neighbour: facilitation through an alternative signalling modality in plants. BMC Ecol 13:19PubMedCentralPubMedCrossRefGoogle Scholar
  10. Gagliano M, Renton M, Duvdevani N, Timmins M, Mancuso S (2012a) Acoustic and magnetic communication in plants. Plant Sig Behav 7(10):1346–1348CrossRefGoogle Scholar
  11. Gagliano M, Mancuso S, Robert D (2012b) Towards understanding plant bioacoustics. Trends Plant Sci 17:323–325PubMedCrossRefGoogle Scholar
  12. George EF, Hall MA, De Klerk G-J (2008) Plant propagation by tissue culture. vol 1. Background, 3rd (edn), Springer, Dordrecht, p 501Google Scholar
  13. Horn P, Nakai RC (1997) Inside Canyon de Chelley (audio recording). Canyon Records, PhoenixGoogle Scholar
  14. Jia Y, Wang B, Wang X, Wang D, Duan C, Yoshiharu T, Akio S (2003) Effect of sound wave on the metabolism of chrysanthemum roots. Coll Surf B: Biointerfaces 29:115–118CrossRefGoogle Scholar
  15. Laschimke R, Burger M, Vallen H (2006) Acoustic emission analysis and experiments with physical model systems reveal a peculiar nature of the xylem tension. J Plant Physiol 163:996–1007PubMedCrossRefGoogle Scholar
  16. Liu YY, Yoshikoshi A, Wang BC, Sakanishi A (2003a) Influence of ultrasonic stimulation on the growth and proliferation of Oryza sativa Nipponbare callus. Coll Surf B: Biointerfaces 27:287–293CrossRefGoogle Scholar
  17. Liu YY, Takatsuki H, Yoshikoshi A, Wang BC, Sakanishi A (2003b) Effects of ultrasound on the growth and vacuolar H+-ATPase activity of Aloe arborescens callus cells. Coll Surf B: Biointerfaces 32:105–116CrossRefGoogle Scholar
  18. Mason TJ (2007) Developments in ultrasound—non-medical. Progr Biophys Mol Biol 93:166–175CrossRefGoogle Scholar
  19. Measures M, Weinberger P (1968) The effect of two audible sound frequencies on the germination and growth of a spring and winter wheat. Can J Bot 46:1151–1158CrossRefGoogle Scholar
  20. Measures M, Weinberger P (1969) The effect of four audible sound frequencies on the growth of Marquis Spring wheat. Can J Bot 48:659–662CrossRefGoogle Scholar
  21. Murashige M, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–497CrossRefGoogle Scholar
  22. Nakai RR (1992) Songs of rainbow World (audio recording). Canyon Records, PhoenixGoogle Scholar
  23. Nyborg WL (1982) Ultrasonic microstreaming and related phenomena. Br J Cancer Suppl 5:156–160PubMedCentralPubMedGoogle Scholar
  24. Otani Y, Chin DP, Mii M (2013) Establishment of Agrobacterium-mediated genetic transformation system in Dahlia. Plant Biotechnol 30:135–139CrossRefGoogle Scholar
  25. Qi L, Teng G, Hou T, Zhu B, Liu X (2010) Influence of sound wave stimulation on the growth of strawberry in sunlight greenhouse. In: Li DL, Zhao CJ (eds) Computer and computing technologies in agriculture III. IFIP advances in information and communication technology, vol 317, Springer, New Jersey, pp 449–454Google Scholar
  26. Raichel DR (2006) The science and applications of acoustics, 2nd edn. Springer, New Jersey, p 660Google Scholar
  27. Rokhina EV, Lens P, Virkutyte J (2009) Low-frequency ultrasound in biotechnology: state of the art. Trends Biotechnol 27:298–306PubMedCrossRefGoogle Scholar
  28. Russowski D, Maurmann N, Rech SB, Fett-Neto AG (2013) Improved production of bioactive valepotriates in whole-plant liquid cultures of Valeriana glechomifolia. Ind Crops Prod 46:253–257CrossRefGoogle Scholar
  29. Safari M, Ghanati F, Behmanesh M, Hajnorouzi A, Nahidian B, Mina G (2013) Enhancement of antioxidant enzymes activity and expression of CAT and PAL genes in hazel (Corylus avellana L.) cells in response to low-intensity ultrasound. Acta Physiol Plant 35:2847–2855CrossRefGoogle Scholar
  30. Shao H, Li B, Wang B, Tang K, Liang Y (2008) A study of differentially expressed gene screening of Chrysanthemum plants under sound stress. CR Biol 331:329–333CrossRefGoogle Scholar
  31. Shrestha BR, Chin DP, Tokuhara K, Mii M (2007) Efficient production of transgenic plants of Vanda through sonication-assisted Agrobacterium-mediated transformation of protocorm-like bodies. Plant Biotechnol 24:429–434CrossRefGoogle Scholar
  32. Song L, Zhao D, Wu Y, Tian X (2009) A simple seed transformation method for obtaining transgenic Brassica napus plants. Agric Sci China 8(6):658–663CrossRefGoogle Scholar
  33. Sujatha M, Vijay S, Vasavi S, Veera Reddy P, Chander Rao S (2012) Agrobacterium-mediated transformation of cotyledons of mature seeds of multiple genotypes of sunflower (Helianthus annuus L.). Plant Cell Tiss Organ Cult 110:275–287CrossRefGoogle Scholar
  34. Švábová L, Snýkal P, Griga M, Ondřej V (2005) Agrobacterium-mediated transformation of Pisum sativum in vitro and in vivo. Biol Plant 49:361–370CrossRefGoogle Scholar
  35. Teixeira da Silva JA (2005) Simple multiplication and effective genetic transformation (4 methods) of in vitro-grown tobacco by stem thin cell layers. Plant Sci 169(6):1046–1058CrossRefGoogle Scholar
  36. Teixeira da Silva JA (2012) New basal media for protocorm-like body and callus induction of hybrid Cymbidium. J Fruit Ornam Plant Res 20(2):127–133Google Scholar
  37. Teixeira da Silva JA, Fukai S (2003) Gene introduction method affects the shoot regeneration of in vitro and greenhouse-grown chrysanthemum (Dendranthema × grandiflora (Ramat.) Kitamura). Afr J Biotechnol 2(5):114–123Google Scholar
  38. Telewski FW (2006) A unified hypothesis of mechanoperception in plants. Am J Bot 93:1466–1476PubMedCrossRefGoogle Scholar
  39. Trick HN, Finer JJ (1997) SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Res 6:329–336CrossRefGoogle Scholar
  40. Trick HN, Finer JJ (1998) Sonication-assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Rep 17:482–488CrossRefGoogle Scholar
  41. Tripathi L, Singh AK, Singh S, Singh R, Chaudhary S, Sanyal I, Amla DV (2013) Optimization of regeneration and Agrobacterium-mediated transformation of immature cotyledons of chickpea (Cicer arietinum L.). Plant Cell Tiss Organ Cult 113:513–527CrossRefGoogle Scholar
  42. van den Eede G, Aarts H, Buhk H-J, Corthier G, Flint HJ, Hammes W, Jacobsen B, Midtvedt T, van der Vossen A, von Wright A, Wackernagel W, Wilcks A (2004) The relevance of gene transfer to the safety of food and feed derived from genetically modified (GM) plants. Food Chem Toxicol 42:1127–1156PubMedCrossRefGoogle Scholar
  43. Vasilevski G (2003) Perspectives of the application of biophysical methods in sustainable agriculture. Bulgarian J Plant Physiol SI:179–186Google Scholar
  44. Wang BC, Yoshikoshi A, Sakanishi A (1998) Carrot cell growth in a stimulated ultrasonic environment. Coll Surf B: Biointerfaces 12:89–95CrossRefGoogle Scholar
  45. Wang B, Zhao H, Liu Y, Jia Y, Akio S (2001) The effects of alternative stress on the cell membrane deformability of Chrysanthemum callus cells. Coll Surf B Biointerfaces 20:321–325CrossRefGoogle Scholar
  46. Wang B, Zhao H, Wang X, Duan Z, Wang D, Akio S (2002) Influence of sound stimulation on plasma membrane H+-ATPase activity. Coll Surf B: Biointerfaces 25:183–188CrossRefGoogle Scholar
  47. Wang X, Wang B, Jia Y, Huo D, Duan C (2003a) Effect of sound stimulation on cell cycle of Chrysanthemum (Gerbera jamesonii). Coll Surf B: Biointerfaces 29:103–107CrossRefGoogle Scholar
  48. Wang X, Wang B, Jia Y, Duan C, Akio S (2003b) Effect of sound wave on the synthesis of nucleic acid and protein in Chrysanthemum. Coll Surf B: Biointerfaces 29:99–102CrossRefGoogle Scholar
  49. Wang B, Shao J, Li B, Lian J, Duan C (2004) Soundwave stimulation triggers the content change of the endogenous hormone of the Chrysanthemum mature callus. Coll Surf B Biointerfaces 37:107–112CrossRefGoogle Scholar
  50. Wang Y, Luo JP, Wu HQ, Jin H (2009) Conversion of protocorm-like bodies of Dendrobium huoshanense to shoots: the role of polyamines in relation to the ratio of total cytokinins and indole-3-acetic acidindole-3-acetic acid. J Plant Physiol 166:1022–2013Google Scholar
  51. Wang BC, Zhou J, Wang YC, Zhu LC, Teixeira da Silva JA (2006) Physical stress and plant growth. In: Teixeira da Silva J (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues (vol II, 1st edn), Global Science Books, Ltd., Isleworth, Chapter 7, pp 68–85Google Scholar
  52. Wei M, Yang C-Y, Wei S-H (2012) Enhancement of the differentiation of protocorm-like bodies of Dendrobium officinale to shoots by ultrasound treatment. J Plant Physiol 169(8):770–774PubMedCrossRefGoogle Scholar
  53. Zheng Q, Zheng Y, Wang G, Guo W, Zhang Z (2011) Sonication assisted Agrobacterium-mediated transformation of chalcone synthase (CHS) gene to spring Dendrobium cultivar ‘Sanya’. Afr J Biotechnol 10(56):11832–11838Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Kagawa-kenJapan
  2. 2.Research Institute of NyíregyházaUniversity of DebrecenNyíregyházaHungary

Personalised recommendations