Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 116, Issue 2, pp 175–185 | Cite as

Using flow cytometry and cytological analyses to assess the genetic stability of somatic embryo-derived plantlets from embryogenic Musa acuminata Colla (AA) ssp. malaccensis cell suspension cultures

  • Rosa M. Escobedo-GraciaMedranoEmail author
  • Josefina I. Maldonado-Borges
  • Martha J. Burgos-Tan
  • Nina Valadez-González
  • José R. Ku-Cauich
Original Paper


Flow cytometry and chromosome counts were used to analyze the genetic stability of plants regenerated via Musa acuminata Colla (AA) ssp. malaccensis embryogenic cell suspension (ECS) cultures. These cultures were initiated from immature zygotic embryos (IZE) on Murashige and Skoog medium using nine different plant growth regulator (PGR) treatments. Highest percentage of embryogenic calli (EC) formation occurred on media with 4.5 μM 2,4-dichlorophenoxyacetic acid (2,4-D, 97 %), and 8.2 μM of picloram (Pi, 80 %) followed by 2.2 μM 2,4-D (75 %). Embryonic development was synchronized in liquid medium by filtration, and somatic embryo development was achieved with ECS aliquots overlaid on PGR-free medium. The EC medium composition and elapsed time of both short-term (~5 months old) and long-term (~2 years old) ECS cultures influenced plant regeneration, resulting in 65–99 % embryo germination and 50 to 100 % plant conversion. The mean 2C DNA content (1.23 ± 0.002 pg) and chromosome number (2n = 2x = 22) of M. acuminata ssp. malaccensis IZEs, seedlings and sucker plantlets were similar to the reported values. No significant differences were detected among IZEs before culturing, and none were found among the IZEs and leaves of control plants and the plants regenerated from short-term ECS lines when initiated with 2,4-D or Pi vis-à-vis the accession from which they originated. However, plants regenerated from the long-term ECS-L3 culture remained diploid, had the highest DNA content (2C = 1.283 ± 0.01 pg) and were clearly separate from the other regenerated and control plants.


Flow cytometry Diploid banana Immature zygotic embryos Somaclonal variation Somatic embryogenesis 



2,4-Dichlorophenoxyacetic acid


Flow cytometry


Fluorescence-activated cell sorter


Immature zygotic embryos


Picloram (4-amino-3, 5,6-trichloropicolinic acid)


Propidium iodide


Somatic embryogenesis


Scanning electron microscopy


Somaclonal variation


Zeatin (6-(4-hydroxy-3-methylbut-2-enylamino) purine)



The authors thank the following individuals: Dr. Jaroslav Dolezel at the Institute of Experimental Botany, Olomouc, Czech Republic for providing the Glycine max cv. Polanka seeds; Ir. I. Van den Houwe, curator of the Musa International Transit Centre at Katholieke Universiteit, Leuven, Belgium, for the plant material; INIFAP-CIR-SURESTE for the conservation field facilities for the in situ Musa collection as launched by the CICY at the INIFAP-Uxmal-Experimental Station-Yucatán, México; Dr. Goreti Campos and MSc. Angela Ku for their help with the scanning electron microscopy; IQA. Wilma A. González for the maintenance of ECS lines; and Ing. Fernando Contreras for assisting with the greenhouse work. This work was funded by SAGARPA-CONACYT Applied Research Project # 0048160 and by CONACYT Basic Science Research Project # 0060838 (to the corresponding author), and studentship # 169880 as awarded to the second author, and a studentship supported by the SAGARPA-CONACYT project (# 0048160) to the third author.

Supplementary material

11240_2013_394_MOESM1_ESM.pdf (146 kb)
Supplementary material 1 (PDF 147 kb)
11240_2013_394_MOESM2_ESM.pdf (344 kb)
Supplementary material 2 (PDF 345 kb)


  1. Afele JC, De Langhe E (1991) Increasing in vitro germination of Musa balbisiana seed. Plant Cell Tissue Organ Cult 27:33–36. doi: 10.1007/bf00048203 CrossRefGoogle Scholar
  2. Asif MJ, Mak C, Othman RY (2001a) In vitro zygotic embryo culture of wild Musa acuminata ssp. malaccensis and factors affecting germination and seedling growth. Plant Cell Tissue Organ Cult 67:267–270. doi: 10.1023/a:1012781531641 CrossRefGoogle Scholar
  3. Asif MJ, Mak C, Othman RY (2001b) Characterization of indigenous Musa species based on flow cytometric analysis of ploidy and nuclear DNA content. Caryologia 54:161–164. doi: 10.1080/00087114.2001.10589223 CrossRefGoogle Scholar
  4. Bairu MW, Fennell CW, Van Staden J (2006) The effect of plant growth regulators on somaclonal variation in Cavendish banana (Musa AAA cv. Zelig). Sci Hort 108:347–351. doi: 10.1016/j.scienta.2006.01.039 CrossRefGoogle Scholar
  5. Bairu MW, Aremu AO, Van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:373–379. doi: 10.1007/s10725-010-9554-x Google Scholar
  6. Bartos J, Alkhimova O, Dolezelova M, De Langhe E, Dolezel J (2005) Nuclear genome size and genomic distribution of ribosomal DNA in Musa and Ensete (Musaceae):taxonomic implications. Cytogenet Genome Res 109:50–57. doi: 10.1159/000082381 PubMedCrossRefGoogle Scholar
  7. Cote FX, Domergue R, Monmarson S, Schewendiman J, Teisson C, Escalant JV (1996) Embryogenic cell suspensions from male flower of Musa AAA cv. Grand Nain. Physiol Plant 97:285–290. doi: 10.1034/j.1399-3054.1996.970211.x CrossRefGoogle Scholar
  8. Cronauer SS, Krikorian AD (1988) Plant regeneration via somatic embryogenesis in the seeded diploid banana Musa ornata Roxb. Plant Cell Rep 7:23–25. doi: 10.1007/BF00272970 CrossRefGoogle Scholar
  9. Dolezel J, Dolezelová M, Novák F (1994) Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biol Plant 36:351–357. doi: 10.1007/bf02920930 CrossRefGoogle Scholar
  10. Dolezel J, Dolezelová M, Roux N, Van den house I (1998) A novel method to prepared slides for high resolution chromosome studies in Musa spp. Info Musa 7:3–4Google Scholar
  11. Dolezel J, Bartos J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51A:127–128. doi: 10.1002/cyto.a.10013 CrossRefGoogle Scholar
  12. Escalant JV, Teisson C (1989) Somatic embryogenesis and plants from immature zygotic embryos of the species Musa acuminata and Musa balbisiana. Plant Cell Rep 7:665–668. doi: 10.1007/bf00272056 PubMedGoogle Scholar
  13. Escalant JV, Teisson C, Cote F (1994) Amplified somatic embryogenesis from male flowers of triploid banana and plantain cultivars (Musa spp.). In Vitro Cell Dev Biol Plant 30P:181–186. doi: 10.1007/bf02823029 CrossRefGoogle Scholar
  14. Georget F, Domergue R, Ferriere N, Cote FX (2000) Morpho-histological study of the different constituents of a banana (Musa AAA, cv. Grande naine) embryogenic cell suspension. Plant Cell Rep 19:748–754. doi: 10.1007/s002999900188 CrossRefGoogle Scholar
  15. Grapin A, Schwendiman J, Teisson C (1996) Somatic embryogenesis in plantain banana. In Vitro Cell Dev Biol Plant 32:66–71. doi: 10.1007/bf02823133: CrossRefGoogle Scholar
  16. Kamaté K, Brown S, Durand P, Bureau JM, De Nay D, Trinh TH (2001) Nuclear DNA content and base composition in 28 taxa of Musa. Genome 44:622–627. doi: 10.1139/g01-058 PubMedGoogle Scholar
  17. Konieczny R, Sliwinska E, Pilarska M, Tuleja M (2012) Morphological and flow cytometric analysis of somatic embryogenesis in Trifolium nigrescens Viv. Plant Cell Tissue Organ Cult 109:131. doi: 10.1007/s11240-011-0081-x CrossRefGoogle Scholar
  18. Larkin PJ, Scowcroft WR (1981) Somaclonal variation a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214. doi: 10.1007/bf02342540 PubMedCrossRefGoogle Scholar
  19. Loureiro J, Rodriguez E, Dolezel J, Santos C (2006) Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Ann Bot 98:679–689. doi: 10.1093/aob/mcl141 PubMedCrossRefGoogle Scholar
  20. Lysák MA, Dolezelová M, Horry JP, Sweenen R, Dolezel J (1999) Flow cytometry analysis of nuclear DNA content in Musa. Theor Appl Genet 98:1344–1350. doi: 10.1007/s001220051201 CrossRefGoogle Scholar
  21. Ma SS (1991) Somatic embryogenesis and plant regeneration from cell suspension culture of banana. In: Proceedings of Symposium on Tissue culture of horticultural crops, Taipei, Taiwan, 8–9 March 1988, pp 181–188Google Scholar
  22. Maldonado-Borges JI, Ku-Cauich JR, Escobedo-GraciaMedrano RM (2013) Annotation of differentially expressed genes in the somatic embryogenesis of Musa and their location in the banana genome. Sci World J, vol. 2013, Article ID 535737, 7 pages, 2013. doi: 10.1155/2013/535737
  23. Marroquin CG, Paduscheck C, Escalant JV, Teisson C (1993) Somatic embryogenesis and plant regeneration through cell suspensions in Musa acuminata. In Vitro Cell Dev Biol Plant 29:43–46. doi: 10.1007/bf02632238 CrossRefGoogle Scholar
  24. Morel G (1950) Sur la culture des tissus de deux monocotylédones. C R Acad Sci Paris 230:1099–1101Google Scholar
  25. Msogoya TJ, Grout BW, Roberts A (2011) Reduction in genome size and DNA methylation alters plant and fruit development in tissue culture induced off-type banana (Musa spp.). J Anim. Plant Sci 11(3):1450–1456Google Scholar
  26. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052 CrossRefGoogle Scholar
  27. Navarro C, Escobedo R, Mayo A (1997) In vitro plant regeneration from embryogenic cultures of a diploid and a triploid, Cavendish banana. Plant Cell Tiss Org Cult 51:17–25. doi: 10.1023/a:1005965030075 CrossRefGoogle Scholar
  28. Novak FJ, Afza R, Van Duren M, Perera-Dallos M, Conger BV, Tang X (1989) Somatic embryogenesis and plant regeneration in suspension cultures of dessert (AA and AAA) and cooking (ABB) bananas (Musa spp.). Nat Biotechnol 7:54–159. doi: 10.1038/nbt0289-154 CrossRefGoogle Scholar
  29. Oh TJ, Cullis MA, Kunert K, Engelborghs I, Swennen R, Cullis CA (2007) Genomic changes associated with somaclonal variation in banana (Musa spp.). Physiol Plant 129:766–774. doi: 10.1111/j.1399-3054.2007.00858.x CrossRefGoogle Scholar
  30. Pinto G, Loureiro J, Lopes T, Santos C (2004) Analysis of the genetic stability of Eucalyptus globules Labill. Somatic embryos by flow cytometry. TAG 109(3):580–587. doi: 10.1007/s00122-004-1655-3 PubMedCrossRefGoogle Scholar
  31. Roux N, Toloza A, Radeck Z, Zapata-Arias FJ, Dolezel J (2003) Rapid detection of aneuploidy in Musa using flow cytometry. Plant Cell Rep 21:483–490. doi: 10.1007/s00299-002-0512-6 PubMedGoogle Scholar
  32. Roux N, Strosse H, Toloza A, Panis B, Dolezel J (2004) Detecting ploidy level instability of banana embryogenic suspension cultures by flow cytometry. In: Jain MS, Swennen R (eds) Banana improvement: cellular, molecular, biology, and induced mutations. Sci. Publishers Inc, Enfield, pp 251–261Google Scholar
  33. Sandoval JA, Cote FX, Escoute J (1996) Chromosome number variations in micropropagated true-to-type and off-type banana plants (Musa AAA Grande Naine cv). In Vitro Cell Dev Biol-Plant 32:14–17. doi: 10.1007/bf02823007 CrossRefGoogle Scholar
  34. Schoofs H, Panis B, Strosse H, Mayo MA, Lopez TJ, Roux N, Doležel J, Swennen R (1999) Bottlenecks in the generation and maintenance of morphogenic banana cell suspensions and plant regeneration via somatic embryogenesis therefrom. Info Musa 8(2):3–7Google Scholar
  35. Strosse H, Domergue R, Panis B, Escalant JV, Côte F (2003). Banana and plantain embryogenic cell suspensions A. Vézina, C. Picq (eds). INIBAP Technical Guidelines 8. The International Network for the Improvement of Banana and Plantain, Montpellier, FranceGoogle Scholar
  36. Strosse H, Van Den Houwe I, Panis B (2004) Banana cell and tissue culture—review. In: Jain MS, Swennen R (eds) Banana improvement: cellular, molecular, biology, and induced mutations. Sci. Publishers Inc, Enfield, pp 1–12Google Scholar
  37. Strosse H, Schoofs H, Panis B, Andre E, Reyniers K, Swennen R (2006) Development of embryogenic cell suspensions from shoot meristematic tissue in bananas and plantains (Musa spp.). Plant Sci 170:104–112. doi: 10.1016/j.plantsci.2005.08.007 CrossRefGoogle Scholar
  38. Uma S, Lakshmi S, Saraswathi MS, Akbar A, Mustaffa MM (2011) Embryo rescue and plant regeneration in banana (Musa spp.). Plant Cell Tissue Org Cult 105:105–111. doi: 10.1007/s11240-010-9847-9 CrossRefGoogle Scholar
  39. Vroh-Bi I, Anagbogu C, Nnadi S, Tenkouano A (2011) Genomic characterization of natural and somaclonal variations in banana (Musa spp.). Plant Mol Biol Rep 29:440–448. doi: 10.1007/s11105-010-0250-9 CrossRefGoogle Scholar
  40. Wang X, Wu R, Lin X, Bai Y, Song C, Yu X, Xu C, Zhao N, Dong Y, Liu B (2013) Tissue culture-induced genetic and epigenetic alterations in rice pure-lines, F1 hybrids and polyploids. BMC Plant Biol 13:77. doi: 10.1186/1471-2229-13-77 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Xiao W, Huang X, Gong Q, Dai X-M, Zhao J-T, Wei Y-R, Huang X-L (2009) Somatic hybrids obtained by asymmetric protoplast fusion between Musa Silk cv. Guoshanxiang (ABB) and Musa acuminata cv. Mas (AA). Plant Cell Tissue Organ Cult 97:313–321. doi: 10.1007/s11240-009-9530-1 CrossRefGoogle Scholar
  42. Youssef M, Andrew J, Mayo MA, Ku-C JR, Grijalva AR, Escobedo-GM RM (2010) Influence of genotype and age of explant source on the capacity for somatic embryogenesis of two Cavendish banana cultivars (Musa acuminata Colla, AAA). Afr J Biotech 9(15):2216–2223. doi: 10.5897/AJB10.1807 Google Scholar
  43. Youssef M, Ku-Cauich R, James A, Escobedo-GM RM (2011). Genetic analysis of somatic embryogenesis derived plants in banana. Assiut Jout Agri Sci, vol 42 (Special Issue), pp. 287–300Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Rosa M. Escobedo-GraciaMedrano
    • 1
    Email author
  • Josefina I. Maldonado-Borges
    • 1
  • Martha J. Burgos-Tan
    • 1
  • Nina Valadez-González
    • 2
  • José R. Ku-Cauich
    • 1
  1. 1.Unidad de Bioquímica y Biología Molecular de PlantasCentro de Investigación Científica de Yucatán, A.C. MéridaMéridaMexico
  2. 2.Laboratorio de Hematología, Centro de Investigaciones Regionales. Dr. Hideyo NoguchiUniversidad Autónoma de YucatánMéridaMexico

Personalised recommendations