Transient expression for functional gene analysis using Populus protoplasts

Original Paper


Despite the availability of the Populus genome sequence and the development of genetic, genomic, and transgenic approaches for its improvement, the lengthy life span of Populus and the cumbersome process required for its transformation have impeded rapid characterization of gene functions in Populus. Protoplasts provide a versatile and physiologically relevant cell system for high-throughput analysis and functional characterization of plant genes. Here, a highly efficient transient expression system using Populus mesophyll protoplasts was developed based on the following three steps. The first step involved formulating a new enzyme cocktail containing 2 % Cellulase C2605 and 0.5 % Pectinase P2611, which was shown to enable efficient large-scale isolation of homogenous Populus mesophyll protoplasts. The second step involved optimization of transfection conditions, such as the polyethylene glycol concentration and amount of plasmid DNA to ensure a >80 % transfection efficiency for Populus protoplasts. The third step involved using the Populus protoplast transient expression system to successfully determine the subcellular localizations of proteins, emulate signaling events during pathogen infection, and prepare protein extracts for Western blotting and protein–protein interaction assays. This rapid and highly efficient transient gene expression system in Populus mesophyll protoplasts will facilitate the rapid identification of gene functions and elucidation of signaling pathways in Populus.


Mesophyll cells Enzyme cocktail PEG-mediated transfection Western blotting Protein interaction 


  1. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983PubMedCrossRefGoogle Scholar
  2. Axtell MJ, Staskawicz BJ (2003) Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112:369–377PubMedCrossRefGoogle Scholar
  3. Boudsocq M, Willmann MR, McCormack M, Lee H, Shan L, He P, Bush J, Cheng SH, Sheen J (2010) Differential innate immune signalling via Ca2+ sensor protein kinases. Nature 464:418–422PubMedCrossRefGoogle Scholar
  4. Bradshaw HD, Ceulemans R, Davis J, Stettler R (2000) Emerging model systems in plant biology: poplar (Populus) as a model forest tree. J Plant Growth Regul 19:306–313CrossRefGoogle Scholar
  5. Busov VB, Strauss SH, Pilate G (2010) Transformation as a tool for genetic analysis in Populus genetics and genomics of Populus. In: Jansson S, Bhalerao RP, Groover AT (eds), genetics and genomics of Populus, 1st edn. Springer, New York, pp 113–133Google Scholar
  6. Davey MR, Anthony P, Power JB, Lowe KC (2005) Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv 23:131–171PubMedCrossRefGoogle Scholar
  7. Dekeyser RA, Claes B, De Rycke R, Habets ME, Van Montagu M, Caplan AB (1990) Transient gene expression in intact and organized rice tissues. Plant Cell 2:591–602PubMedGoogle Scholar
  8. Du N, Liu X, Li Y, Chen S, Zhang J, Ha D, Deng W, Sun C, Zhang Y, Pijut P (2012) Genetic transformation of Populus tomentosa to improve salt tolerance. Plant Cell Tiss Org Cult 108(2):181–189CrossRefGoogle Scholar
  9. Faraco M, Di Sansebastiano GP, Spelt K, Koes RE, Quattrocchio FM (2011) One protoplast is not the other! Plant Physiol 156:474–478PubMedCrossRefGoogle Scholar
  10. Guo J, Morrell-Falvey JL, Labbé JL, Muchero W, Kalluri UC, Tuskan GA, Chen JG (2012) Highly efficient isolation of Populus mesophyll protoplasts and its application in transient expression assays. PLoS ONE 7:e44908PubMedCrossRefGoogle Scholar
  11. He S, Shan W, Kuang JF, Xie H, Xiao YY, Lu WJ, Chen JY (2012) Molecular characterization of a stress-response bZIP transcription factor in banana. Plant Cell Tiss Org Cult:1–15. doi:10.1007/s11240-012-0258-y
  12. Jansson S, Douglas CJ (2007) Populus: a model system for plant biology. Annu Rev Plant Biol 58:435–458PubMedCrossRefGoogle Scholar
  13. Jiang L, Wang J, Liu Z, Wang L, Zhang F, Liu GC, Zhong Q (2010) Silencing induced by inverted repeat constructs in protoplasts of Nicotiana benthamiana. Plant Cell Tiss Org Cult 100:139–148CrossRefGoogle Scholar
  14. Kang J, Ide Y, Sasaki S (1995) Isolation and culture of leaf protoplasts from in vitro subcultured Poplars: Populus tomentosa, Populus alba cv. Pyramidalis × Populus tomentosa and Populus maximowiczii × Populus plantierensis. Bull Tokyo Uni For 93:59–63Google Scholar
  15. Larkin PJ (1976) Purification and viability determinations of plant protoplasts. Planta 128:213–216CrossRefGoogle Scholar
  16. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497CrossRefGoogle Scholar
  17. Petřivalský M, Vaníčková P, Ryzí M, Navrátilová B, Piterková J, Sedlářová M, Luhová L (2012) The effects of reactive nitrogen and oxygen species on the regeneration and growth of cucumber cells from isolated protoplasts. Plant Cell Tiss Org Cult 108(2):237–249CrossRefGoogle Scholar
  18. Pitzschke A, Persak H (2012) Poinsettia protoplasts—a simple, robust and efficient system for transient gene expression studies. Plant Methods 8:14PubMedCrossRefGoogle Scholar
  19. Rouxel T, Balesdent MH (2010) Avirulence genes. In: Encyclopedia of Life Sciences (ELS). John Wiley & Sons. doi:10.1002/9780470015902.a00212672010
  20. Russell JA, McCown BH (1986) Techniques for enhanced release of leaf protoplasts in Populus. Plant Cell Rep 5:284–287CrossRefGoogle Scholar
  21. Sasamoto H, Hosoi Y, Ishii K, Sato T, Saito A (1989) Factors affecting the formation of callus from leaf protoplasts of Populus alba. J Jpn For Soc 71:449–455Google Scholar
  22. Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127:1466–1475PubMedCrossRefGoogle Scholar
  23. Sodhi A, Biswas SK (2002) Monocyte chemoattractant protein-1-induced activation of p42/44 MAPK and c-Jun in murine peritoneal macrophages: a potential pathway for macrophage activation. J Interferon Cytokine Res 22:517–526PubMedCrossRefGoogle Scholar
  24. Taylor G (2002) Populus: Arabidopsis for forestry. Do we need a model tree? Ann Bot 90:681–689PubMedCrossRefGoogle Scholar
  25. Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604PubMedCrossRefGoogle Scholar
  26. Walter M, Chaban C, Schütze K, Batistic O, Weckermann K, Näke C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438PubMedCrossRefGoogle Scholar
  27. Weinthal D, Tzfira T (2009) Imaging protein–protein interactions in plant cells by bimolecular fluorescence complementation assay. Trends Plant Sci 14:59–63PubMedCrossRefGoogle Scholar
  28. Wu F, Shen S, Lee L, Lee SH, Chan MT, Lin CS (2009) Tape-Arabidopsis Sandwich—a simpler Arabidopsis protoplast isolation method. Plant Methods 5:16PubMedCrossRefGoogle Scholar
  29. Yoo S, Cho Y, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572PubMedCrossRefGoogle Scholar
  30. Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7(1):30PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety ImprovementNanjing Forestry UniversityNanjingChina
  2. 2.Key Laboratory of Genetics and Biotechnology, Ministry of EducationNanjing Forestry UniversityNanjingChina

Personalised recommendations