Overexpression of a cytosolic glyceraldehyde-3-phosphate dehydrogenase gene OsGAPC3 confers salt tolerance in rice

  • Xiu-Hong Zhang
  • Xiao-Lan Rao
  • Hai-Tao Shi
  • Rong-Jun Li
  • Ying-Tang LuEmail author
Original Paper


Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a highly conserved glycolytic enzyme that plays an important role in carbon economy. However, recent analyses of GAPDH demonstrate that GAPDH is a multifunctional protein that has roles in various cellular functions. In this study, three putative cytosolic GAPDH protein sequences (OsGAPC1–3) were identified from the rice (Oryza sativa) genome. The OsGAPC family has similar exon–intron structures. OsGAPCs transcripts were highly present in seedling shoots and roots, booting leaves, and flowers, but are at low levels in booting culms. Three OsGAPC genes are responsive to all the abiotic stresses including osmotic (20% PEG 6000), salt (200 mM NaCl), heat (42°C), abscisic acid (50 μM) and methyl viologen (50 μM) treatments. Transient expression of GFP-OsGAPC3 fusion protein in onion epidermal cells revealed that OsGAPC3 was indeed a cytosolic protein. One of the representative OsGAPC genes, OsGAPC3, which was induced most significantly by salt stress, was over-expressed in japonica rice Zhonghua 11 under the control of a ubiquitin promoter. Transgenic rice plants overexpressing OsGAPC3 showed enhanced tolerance to salt stress. Furthermore, we found that OsGAPC3 could alleviate the salt toxicity through the regulation of hydrogen peroxide (H2O2) levels. Taken together, these results indicate that OsGAPC3 plays important roles in salt stress tolerance in rice.


Oryza sativa Glyceraldehyde-3-phosphate dehydrogenase Abiotic stress Salt tolerance Hydrogen peroxide 



Abscisic acid


Glyceraldehyde-3-phosphate dehydrogenase


Hydrogen peroxide


Murashige and Skoog medium


Methyl viologen


Polyethylene glycol


Reverse transcription-polymerase chain reaction


Reactive oxygen species





This work was supported by National Natural Science Foundation of China (Grant # 30821064), Major State Basic Research Program (2007CB108701) and National Transgenic Research Project (2009zx08009-018B) to YT Lu.

Supplementary material

11240_2011_9950_MOESM1_ESM.doc (29 kb)
Supplementary material 1 (DOC 29 kb)
11240_2011_9950_MOESM2_ESM.doc (34 kb)
Supplementary material 2 (DOC 34 kb)


  1. Aguan K, Sugawara K, Suzuki N, Kusano T (1991) Isolation of genes for low-temperature-induced proteins in rice by a simple subtractive method. Plant Cell Physiol 32:1285–1289Google Scholar
  2. Anderson LE, Ringenberg MR, Carol AA (2004) Cytosolic glyceraldehyde-3-P dehydrogenase and the B subunit of the chloroplast enzyme are present in the pea leaf nucleus. Protoplasma 223(1):33–43. doi: 10.1007/s00709-003-0030-6 PubMedCrossRefGoogle Scholar
  3. Baek D, Jin Y, Jeong JC, Lee HJ, Moon H, Lee J, Shin D, Kang CH, Kim DH, Nam J, Lee SY, Yun DJ (2008) Suppression of reactive oxygen species by glyceraldehyde-3-phosphate dehydrogenase. Phytochemistry 69(2):333–338. doi: 10.1016/j.phytochem.2007.07.027 PubMedCrossRefGoogle Scholar
  4. Cerff R, Chambers SE (1979) Subunit structure of higher plant glyceraldehyde-3-phosphate dehydrogenases (EC and EC J Biol Chem 254(13):6094–6098PubMedGoogle Scholar
  5. Chatzissavvidis C, Veneti G, Papadakis I, Therios I (2008) Effect of NaCl and CaCl2 on the antioxidant mechanism of leaves and stems of the rootstock CAB-6P (Prunus cerasus L.) under in vitro conditions. Plant Cell Tiss Organ Cult 95:37–45. doi: 10.1007/s11240-008-9411-z CrossRefGoogle Scholar
  6. Colell A, Ricci JE, Tait S, Milasta S, Maurer U, Bouchier-Hayes L, Fitzgerald P, Guio-Carrion A, Waterhouse NJ, Li CW, Mari B, Barbry P, Newmeyer DD, Beere HM, Green DR (2007) GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129(5):983–997. doi: 10.1016/j.cell.2007.03.045 PubMedCrossRefGoogle Scholar
  7. Cutler SR, Ehrhardt DW, Griffitts JS, Somerville CR (2000) Random GFP:cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci USA 97(7):3718–3723PubMedCrossRefGoogle Scholar
  8. de Klerk GJ, Pumisutapon P (2008) Protection of in vitro grown Arabidopsis seedlings against abiotic stresses. Plant Cell Tiss Organ Cult 95:149–154. doi: 10.1007/s11240-008-9426-5 CrossRefGoogle Scholar
  9. del Rio LA, Corpas FJ, Sandalio LM, Palma JM, Gomez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53(372):1255–1272PubMedCrossRefGoogle Scholar
  10. Dewdney J, Conley TR, Shih MC, Goodman HM (1993) Effects of blue and red light on expression of nuclear genes encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase of Arabidopsis thaliana. Plant Physiol 103(4):1115–1121PubMedCrossRefGoogle Scholar
  11. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33(4):751–763PubMedCrossRefGoogle Scholar
  12. Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8(5):978–984. doi: 10.1110/ps.8.5.978 PubMedCrossRefGoogle Scholar
  13. Fermani S, Sparla F, Falini G, Martelli PL, Casadio R, Pupillo P, Ripamonti A, Trost P (2007) Molecular mechanism of thioredoxin regulation in photosynthetic A2B2-glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA 104(26):11109–11114. doi: 10.1073/pnas.0611636104 PubMedCrossRefGoogle Scholar
  14. Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Yi Chuan 29(8):1023–1026PubMedGoogle Scholar
  15. Hajirezaei MR, Biemelt S, Peisker M, Lytovchenko A, Fernie AR, Sonnewald U (2006) The influence of cytosolic phosphorylating glyceraldehyde 3-phosphate dehydrogenase (GAPC) on potato tuber metabolism. J Exp Bot 57(10):2363–2377. doi: 10.1093/jxb/erj207 PubMedCrossRefGoogle Scholar
  16. Hancock JT, Henson D, Nyirenda M, Desikan R, Harrison J, Lewis M, Hughes J, Neill SJ (2005) Proteomic identification of glyceraldehyde 3-phosphate dehydrogenase as an inhibitory target of hydrogen peroxide in Arabidopsis. Plant Physiol Biochem 43(9):828–835. doi: 10.1016/j.plaphy.2005.07.012 PubMedCrossRefGoogle Scholar
  17. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6(2):271–282PubMedCrossRefGoogle Scholar
  18. Huai JL, Zheng J, Wang GY (2009) Overexpression of a new Cys2/His2 zinc finger protein ZmZF1 from maize confers salt and drought tolerance in transgenic Arabidopsis. Plant Cell Tiss Organ Cult 99:117–124. doi: 10.1007/s11240-009-9582-2 CrossRefGoogle Scholar
  19. Iwamoto M, Higo H, Higo K (2000) Differential diurnal expression of rice catalase genes; the 5’ flanking region of CatA is not sufficient for circadian control. Plant Sci 151:39–46CrossRefGoogle Scholar
  20. Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345(2):646–651. doi: 10.1016/j.bbrc.2006.04.140 PubMedCrossRefGoogle Scholar
  21. Jeong MJ, Park SC, Kwon HB, Byun MO (2000) Isolation and characterization of the gene encoding glyceraldehyde-3-phosphate dehydrogenase. Biochem Biophys Res Commun 278(1):192–196. doi: 10.1006/bbrc.2000.3732 PubMedCrossRefGoogle Scholar
  22. Jeong MJ, Park SC, Byun MO (2001) Improvement of salt tolerance in transgenic potato plants by glyceraldehyde-3 phosphate dehydrogenase gene transfer. Mol Cells 12(2):185–189PubMedGoogle Scholar
  23. Kim JW, Dang CV (2005) Multifaceted roles of glycolytic enzymes. Trends Biochem Sci 30(3):142–150. doi: 10.1016/j.tibs.2005.01.005 PubMedCrossRefGoogle Scholar
  24. Kleczkowski LA (1993) Inhibitors of photosynthetic enzymes/carriers and metabolism. Annu Rev Plant Physiol Plant Mol Biol 45:339–367CrossRefGoogle Scholar
  25. Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinf 9(4):299–306. doi: 10.1093/bib/bbn017 CrossRefGoogle Scholar
  26. Li YH, Zhang YZ, Feng FJ, Dong L, Cheng LL, Ma FW, Shi SG (2010) Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M.26 and its influence on salt tolerance. Plant Cell Tiss Organ Cult 102:337–345. doi: 10.1007/s11240-010-9738-0 CrossRefGoogle Scholar
  27. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10(8):1391–1406PubMedCrossRefGoogle Scholar
  28. Lokhande VH, Nikam TD, Patade VY, Ahire ML, Suprasanna P (2011) Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell Tiss Organ Cult 104:41–49. doi: 10.1007/s11240-010-9802-9 CrossRefGoogle Scholar
  29. Manjunath S, Sachs MM (1997) Molecular characterization and promoter analysis of the maize cytosolic glyceraldehyde 3-phosphate dehydrogenase gene family and its expression during anoxia. Plant Mol Biol 33(1):97–112PubMedCrossRefGoogle Scholar
  30. Marri L, Sparla F, Pupillo P, Trost P (2005) Co-ordinated gene expression of photosynthetic glyceraldehyde-3-phosphate dehydrogenase, phosphoribulokinase, and CP12 in Arabidopsis thaliana. J Exp Bot 56(409):73–80. doi: 10.1093/jxb/eri020 PubMedGoogle Scholar
  31. Martin W, Cerff R (1986) Prokaryotic features of a nucleus-encoded enzyme. cDNA sequences for chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenases from mustard (Sinapis alba). Eur J Biochem 159(2):323–331PubMedCrossRefGoogle Scholar
  32. Meyer-Siegler K, Mauro DJ, Seal G, Wurzer J, deRiel JK, Sirover MA (1991) A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA 88(19):8460–8464PubMedCrossRefGoogle Scholar
  33. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498. doi: 10.1016/j.tplants.2004.08.009 PubMedCrossRefGoogle Scholar
  34. Okuda T, Matsuda Y, Yamanaka A, Sagisaka S (1991) Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol 97(3):1265–1267PubMedCrossRefGoogle Scholar
  35. Perusse JR, Schoen DJ (2004) Molecular evolution of the GapC gene family in Amsinckia spectabilis populations that differ in outcrossing rate. J Mol Evol 59(4):427–436. doi: 10.1007/s00239-004-2623-x PubMedCrossRefGoogle Scholar
  36. Petersen J, Brinkmann H, Cerff R (2003) Origin, evolution, and metabolic role of a novel glycolytic GAPDH enzyme recruited by land plant plastids. J Mol Evol 57(1):16–26. doi: 10.1007/s00239-002-2441-y PubMedCrossRefGoogle Scholar
  37. Plaxton WC (1996) The organization and regulation of plant glycolysis. Annu Rev Plant Physiol Plant Mol Biol 47:185–214. doi: 10.1146/annurev.arplant.47.1.185 PubMedCrossRefGoogle Scholar
  38. Rius SP, Casati P, Iglesias AA, Gomez-Casati DF (2008) Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. Plant Physiol 148(3):1655–1667. doi: 10.1104/pp.108.128769 PubMedCrossRefGoogle Scholar
  39. Russell DA, Sachs MM (1989) Differential expression and sequence analysis of the maize glyceraldehyde-3-phosphate dehydrogenase gene family. Plant Cell 1(8):793–803. doi: 10.1105/tpc.1.8.7931/8/793 PubMedCrossRefGoogle Scholar
  40. Russell DA, Wong DM, Sachs MM (1990) The anaerobic response of soybean. Plant Physiol 92(2):401–407PubMedCrossRefGoogle Scholar
  41. Scandalios JG (2002) The rise of ROS. Trends Biochem Sci 27(9):483–486PubMedCrossRefGoogle Scholar
  42. Sirover MA (1999) New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta 1432(2):159–184PubMedCrossRefGoogle Scholar
  43. Sirover MA (2005) New nuclear functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. J Cell Biochem 95(1):45–52. doi: 10.1002/jcb.20399 PubMedCrossRefGoogle Scholar
  44. Smith TL, Leong SA (1990) Isolation and characterization of a Ustilago maydis glyceraldehyde-3-phosphate dehydrogenase-encoding gene. Gene 93(1):111–117PubMedCrossRefGoogle Scholar
  45. Sun J, Li LS, Liu MQ, Wang MJ, Ding MQ, Deng SR, Lu CF, Zhou XY, Shen X, Zheng XJ, Chen SL (2010) Hydrogen peroxide and nitric oxide mediate K+/Na+ homeostasis and antioxidant defense in NaCl-stressed callus cells of two contrasting poplars. Plant Cell Tiss Organ Cult 103:205–215. doi: 10.1007/s11240-010-9768-7 CrossRefGoogle Scholar
  46. Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Current Protocols Bioinformatics Chapter 2: Unit 2 3. doi: 10.1002/0471250953.bi0203s00
  47. Velasco R, Salamini F, Bartels D (1994) Dehydration and ABA increase mRNA levels and enzyme activity of cytosolic GAPDH in the resurrection plant Craterostigma plantagineum. Plant Mol Biol 26(1):541–546PubMedCrossRefGoogle Scholar
  48. Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inze D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J 16(16):4806–4816. doi: 10.1093/emboj/16.16.4806 PubMedCrossRefGoogle Scholar
  49. Wu L, Tang T, Zhou R, Shi S (2007) PCR-mediated recombination of the amplification products of the Hibiscus tiliaceus cytosolic glyceraldehyde-3-phosphate dehydrogenase gene. J Biochem Mol Biol 40(2):172–179PubMedCrossRefGoogle Scholar
  50. Yang Y, Kwon HB, Peng HP, Shih MC (1993) Stress responses and metabolic regulation of glyceraldehyde-3-phosphate dehydrogenase genes in Arabidopsis. Plant Physiol 101(1):209–216PubMedCrossRefGoogle Scholar
  51. Zhang SG, Han SY, Yang WH, Wei HL, Zhang M, Qi LW (2010) Changes in H2O2 content and antioxidant enzyme gene expression during the somatic embryogenesis of Larix leptolepis. Plant Cell Tiss Organ Cult 100:21–29. doi: 10.1007/s11240-009-9612-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Xiu-Hong Zhang
    • 1
  • Xiao-Lan Rao
    • 1
  • Hai-Tao Shi
    • 1
  • Rong-Jun Li
    • 1
  • Ying-Tang Lu
    • 1
    Email author
  1. 1.State Key Laboratory of Hybrid Rice and Key Lab of MOE for Plant Developmental Biology, College of Life SciencesWuhan UniversityWuhanChina

Personalised recommendations