Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 106, Issue 2, pp 279–288 | Cite as

Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum

  • Ana Coste
  • Laurian Vlase
  • Adela Halmagyi
  • Constantin Deliu
  • Gheorghe Coldea
Original Paper


We investigated the effects of plant growth regulators [6-benzyladenine (BA), kinetin (Kin), 6-γ,γ-dimethylallylaminopurine (2iP), thidiazuron (TDZ) and α-naphthaleneacetic acid (NAA)], modified Murashige and Skoog (MS) medium containing 10 mM NH4 + and 5 mM NO3 and supplemented with 2iP, BA, Kin and NAA (MSM medium), and two elicitors [jasmonic acid (JA), and salicylic acid (SA)], on plant growth and accumulation of hypericins (hypericin and pseudohypericin) and hyperforin in shoot cultures of Hypericum hirsutum and H. maculatum. Our data suggested that culture of shoots on MS medium supplemented with BA (0.4 mg l−1) or Kin (0.4 mg l−1) enhanced production of hypericins in H. maculatum and hyperforin in H. hirsutum. Hypericins and hyperforin concentrations decreased in both species when TDZ (0.4 mg l−1) was added to the MS medium. Also, TDZ induced hyperhydric malformations and necrosis of regenerated shoots. Cultivation of H. maculatum on MSM medium resulted in approximately twofold increased production of hypericins compared to controls, and the growth of H. hirsutum shoots on the same medium led to a 6.16-fold increase in hyperforin production. Of the two elicitors, SA was more effective in stimulating the accumulation of hypericins. At 50 μM, SA enhanced the production of hypericin (7.98-fold) and pseudohypericin (13.58-fold) in H. hirsutum, and, at 200 μM, enhanced the production of hypericin (2.2-fold) and pseudohypericin (3.94-fold) in H. maculatum.


Plant growth regulators Elicitors Hypericin Pseudohypericin Hyperforin 



This study has been supported by a research project (Nr. 61005/2007) from the Romanian Ministry of Education and Research and the National Centre for Programme Management. The authors also gratefully acknowledge the support of Dr. Eng. Dragos Postolache from the Forest Genetics Group of ICAS Simeria, Romania, in processing the statistical data.


  1. Bacila I, Coste A, Halmagyi A, Deliu C (2010) Micropropagation of Hypericum maculatum Cranz an important medicinal plant. Romanian Biotechnol Lett 15:86–91Google Scholar
  2. Baebler Š, Hren M, Camloh M, Ravnikar M, Bohanec B, Plaper I, Ucman R, Žel J (2005) Establishment of cell suspension cultures of yew (Taxus × media REHD.) and assessment of their genomic stability. In vitro Cell Dev Bio Plant 41:338–343CrossRefGoogle Scholar
  3. Bagdonaitė E, Kazlauskas S (2006) Secondary metabolites variation in Hypericum maculatum. Acta Biol Univ Daugavp 6:39–44Google Scholar
  4. Bruni R, Sacchetti G (2009) Factors affecting polyphenol biosynthesis in wild and field grown St. John’s Wort (Hypericum perforatum L. Hypericaceae/Guttiferae). Molecules 14:682–725PubMedCrossRefGoogle Scholar
  5. Čellárová E (2003) Culture and biotechnology of Hypericum. In: Ernst E (ed) Hypericum: the genus Hypericum, medicinal and aromatic plants—industrial profiles, vol 31. CRC, New York, pp 65–76Google Scholar
  6. Čellárová E, Kimákova K, Brutóvska R (1992) Multiple shoot formation and phenotypic changes of R0 regenerants in Hypericum perforatum L. Acta Biotechnol 12:445–452CrossRefGoogle Scholar
  7. Charchoglyan A, Abrahamyan A, Fujii I, Boubakir Z, Gulder TAM, Kutchan TM, Vardapetyan H, Bringmann G, Ebizuka Y, Beerhues L (2007) Differential accumulation of hyperforin and secohyperforin in Hypericum perforatum tissue cultures. Phytochemistry 68:2670–2677PubMedCrossRefGoogle Scholar
  8. Conceição LFR, Ferreres Tavares RM, Dias ACP (2006) Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation. Phytochemistry 67:149–155PubMedCrossRefGoogle Scholar
  9. Cui XH, Murthy HN, Wu CH, Paek KY (2010) Adventitious root suspension cultures of Hypericum perforatum: effect of nitrogen source on production of biomass and secondary metabolites. In vitro Cell Dev Biol Plant 46:437–444CrossRefGoogle Scholar
  10. Don Palmer C, Keller WA (2010) Plant regeneration from petal explants of Hypericum perforatum L. Plant Cell Tiss Organ Cult. doi: 10.1007/s11240-010-9839-9 Google Scholar
  11. Franklin G, Dias ACP (2006) Organogenesis and embryogenesis in several Hypericum perforatum genotypes. In vitro Cell Dev Biol Plant 42:324–330CrossRefGoogle Scholar
  12. Gadzovska S, Maury S, Ounnar S, Righezza M, Kascakova S, Refregiers M, Spasenoski M, Joseph C, Hagège D (2005) Identification and quantification of hypericin and pseudohypericin in different Hypericum perforatum L. in vitro cultures. Plant Physiol Biochem 43:591–601PubMedCrossRefGoogle Scholar
  13. Gadzovska S, Maury S, Delaunay A, Spasenoski M, Joseph C, Hagège D (2007) Jasmonic acid elicitation of Hypericum perforatum L. cell suspensions and effects on the production of phenylpropanoids and naphtodianthrones. Plant Cell Tiss Organ Cult 89:1–13CrossRefGoogle Scholar
  14. Gao-Bin P, Dong-Ming M, Jian-Lin C, Lan-Qing M, Hong W, Guo-Feng L, He-Chun Y, Liu BY (2009) Salicylic acid activates artemisinin biosynthesis in Artemisia annua L. Plant Cell Rep 28:1127–1135CrossRefGoogle Scholar
  15. Goel MK, Kukreja AK, Bisht NS (2009) In vitro manipulations in St. John’s wort (Hypericum perforatum L.) for incessant and scale up micropropagation using adventitious roots in liquid medium and assessment of clonal fidelity using RAPD analysis. Plant Cell Tiss Organ Cult 96:1–9CrossRefGoogle Scholar
  16. Gudžić BT, Smelcerovic A, Dordevic S, Mimica-Dukic N, Ristic M (2007) Essential oil composition of Hypericum hirsutum L. Flavour Fragr J 22:42–43CrossRefGoogle Scholar
  17. Ivanova M, Van Staden J (2008) Effect of ammonium ions and cytokinins on hyperhydricity and multiplication rate of in vitro regenerated shoots of Aloe polyphylla. Plant Cell Tiss Org Cult 92:227–231CrossRefGoogle Scholar
  18. Ivanova M, Van Staden J (2009) Nitrogen source, concentration, and NH4 +:NO3 ratio influence shoot regeneration and hyperhydricity in tissue cultured Aloe polyphylla. Plant Cell Tiss Organ Cult 99:167–174CrossRefGoogle Scholar
  19. Ivanova M, Van Staden J (2010) Influence of gelling agent and cytokinins on the control of hyperhydricity in Aloe polyphylla. Plant Cell Tiss Organ Cult 23:5–7. doi: 10.1007/s11240-010-9794-5 Google Scholar
  20. Karioti A, Bilia AR (2010) Hypericins as potential leads for new therapeutics. Int J Mol Sci 11:562–594PubMedCrossRefGoogle Scholar
  21. Karppinen K, György Z, Kauppinen M, Tolonen A, Jalonen J, Neubauer P, Hohtola A, Häggman H (2006) In vitro propagation of Hypericum perforatum L. and accumulation of hypericins, pseudohypericins and phloroglucinols. Prop Orn Plants 6:170–179Google Scholar
  22. Kartnig T, Göbel I (1992) Hypericin and pseudohypericin in cell cultures of various Hypericum species and chemotypes. Planta Med 58:579–580CrossRefGoogle Scholar
  23. Kartnig T, Göbel I, Heydel B (1996) Production of hypericin, pseudohypericin and flavonoids in cell cultures of various Hypericum species and their chemotipes. Planta Med 62:51–53PubMedCrossRefGoogle Scholar
  24. Kim OT, Bang KH, In DS, Kim TS, Seong NS, Cha SW, Ahn JC, Hwang B (2006) Micropropagation of Hypericum erectum Thunberg by using Thidiazuron. Korean J Medicinal Crop Sci 14:278–281Google Scholar
  25. Kirakosyan A, Sirvent TM, Gibson DM, Kaufman PB (2004) The production of hypericins and hyperforin by in vitro cultures of St. John’s wort (Hypericum perforatum). Biotechnol Appl Biochem 39:71–81PubMedCrossRefGoogle Scholar
  26. Kirakosyan A, Gibson DM, Kaufman PB (2008) The production of dianthrones and phloroglucinol derivatives in St. John’s Wort. In: Ramawat KG, Mérillon JM (eds) Bioactive molecules and medicinal plants. Springer, Berlin, pp 149–164CrossRefGoogle Scholar
  27. Koperdáková J, Katkovèinová Z, Košuth J, Giovannini A, Čellárová E (2009) Morphogenetic response to plant growth regulators in transformed and untransformed Hypericum perforatum L. clones. Acta Biol Cracov Ser Bot 51:1–70Google Scholar
  28. Kusari S, Zühlke S, Borsch T, Spiteller M (2009) Positive correlations between hypericin and putative precursors detected in the quantitative secondary metabolite spectrum of Hypericum. Phytochemistry 70:1222–1232PubMedCrossRefGoogle Scholar
  29. Liu S, Zhong JJ (1997) Simultaneous production of ginseng saponin and polysaccharide by suspension cultures of Panax ginseng: nitrogen effects. Enzyme Microb Technol 21:518–524CrossRefGoogle Scholar
  30. Liu XN, Zhang XQ, Sun JS (2007a) Effects of cytokinins and elicitors on the production of hypericins and hyperforin metabolites in Hypericum sampsonii and Hypericum perforatum. Plant Growth Regul 53:207–214CrossRefGoogle Scholar
  31. Liu XN, Zhang XQ, Zhang SX, Sun JS (2007b) Regulation of metabolite production by precursors and elicitors in liquid cultures of Hypericum perforatum. Plant Cell Tiss Organ Cult 91:1–7CrossRefGoogle Scholar
  32. Mártonfi P, Repčák M, Zanvit P (2006) Secondary metabolites variation in Hypericum maculatum and its relatives. Biochem Syst Ecol 34:56–59CrossRefGoogle Scholar
  33. Mehrotra S, Goel MK, Kukreja AK, Mishra BN (2007) Efficiency of liquid culture systems over conventional micropropagation: A progress towards commercialization. Afr J Biotechnol 6:1484–1492Google Scholar
  34. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  35. Namedo AG (2007) Plant cell elicitation for production of secondary metabolites: A review. Pharmacogn Rev 1:69–79Google Scholar
  36. Pan XW, Xu HH, Liu X, Gao X, Lu YT (2004) Improvement of growth and camptothecin yield by altering nitrogen source supply in cell suspension cultures of Camptotheca acuminata. Biotechnol Lett 26:1745–1748PubMedCrossRefGoogle Scholar
  37. Qian ZG, Zhao ZJ, Xu Y, Qian X, Zhong JJ (2006) Novel chemically synthesized salicylate derivative as an effective elicitor for inducing the biosynthesis of plant secondary metabolites. Biotechnol Prog 22:331–333PubMedCrossRefGoogle Scholar
  38. Robson NKB (2002) Studies in the genus Hypericum L. (Guttiferae) 4(2). Section 9. Hypericum sensu lato (part 2): subsection 1. Hypericum series 1. Hypericum. Bull Nat Hist Mus London Bot 32:61–123Google Scholar
  39. Santarem ER, Astarita LV (2003) Multiple shoot formation in Hypericum perforatum L. and hypericin production. Brazilian J Plant Physiol 15:21–26Google Scholar
  40. Sirvent TM, Gibson DM (2002) Induction of hypericins and hyperforin in Hypericum perforatum L. in response to biotic and chemical elicitors. Physiol Mol Plant Path 60:311–320Google Scholar
  41. Smelcerovic A, Verma V, Spiteller M, Ahmad SM, Puri SC, Qazi GN (2006) Phytochemical analysis and genetic characterization of six Hypericum species from Serbia. Phytochemistry 67:171–177PubMedCrossRefGoogle Scholar
  42. Smelcerovic A, Spiteller M, Ligon AP, Smelcerovic Z, Raabe N (2007) Essential oil composition of Hypericum L. species from Southeastern Serbia and their chemotaxonomy. Biochem Syst Ecol 35:99–113CrossRefGoogle Scholar
  43. Soelberg J, Jørgensen LB, Jäger AK (2007) Hyperforin accumulates in the translucent glands of Hypericum perforatum. Ann Bot 99:1097–1100PubMedCrossRefGoogle Scholar
  44. Taniguchi S, Nakamura N, Nose M, Takeda S, Yabu-uchi R, Ito H, Yoshida T, Yazaki K (1998) Production of macrocyclic ellagitannin oligomers by Oenothera laciniata callus cultures. Phytochemistry 48:981–985PubMedCrossRefGoogle Scholar
  45. Walker TS, Bais HP, Vivanco JM (2002) Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John’s wort). Phytochemistry 60:289–293PubMedCrossRefGoogle Scholar
  46. Yu KW, Gao WY, Hahn EJ, Paek KY (2002) Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochem Eng J 11:211–215CrossRefGoogle Scholar
  47. Yu ZZ, Fu CX, Han YS, Li YX, Zhao DX (2006) Salicylic acid enhances jaceosidin and syringin production in cell cultures of Saussurea medusa. Biotechnol Lett 28:1027–1031PubMedCrossRefGoogle Scholar
  48. Ziv M, Ronen G, Raviv M (1998) Proliferation of meristematic clusters in disposable presterlized plastic bioreactors for large scale micropropagation of plants. In vitro Cell Dev Biol Plant 34:152–158CrossRefGoogle Scholar
  49. Zobayed SMA, Murch SJ, Rupasinghe HPV, Saxena PK (2004) In vitro production and chemical characterization of St. John’s wort (Hypericum perforatum L. cv ‘New stem’). Plant Sci 166:333–340CrossRefGoogle Scholar
  50. Zobayed SMA, Afreen F, Goto E, Kozai T (2006) Plant-environment interactions: Accumulation of hypericin in dark glands of Hypericum perforatum. Ann Bot 98:793–804PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Ana Coste
    • 1
  • Laurian Vlase
    • 2
  • Adela Halmagyi
    • 1
  • Constantin Deliu
    • 1
  • Gheorghe Coldea
    • 1
  1. 1.Institute of Biological ResearchCluj-NapocaRomania
  2. 2.Faculty of PharmacyIuliu Haţieganu University of Medicine and PharmacyCluj-NapocaRomania

Personalised recommendations