Advertisement

Induced polyploidization and its influence on yield, morphological, and qualitative characteristics of microtubers in Ullucus tuberosus

  • Iva ViehmannováEmail author
  • Martina Trávníčková
  • Eva Špatenková
  • Monika Černá
  • Pavel Trávníček
Original Paper

Abstract

This study aimed to induce in vitro polyploidization in diploid ulluco (2n = 24) using oryzalin, an antimicrotubule agent. Nodal segments were treated with 0, 20, 25 or 30 μM oryzalin for 24 or 48 h. Ploidy determination of regenerants was based on flow cytometry and chromosome countings in metaphasic cells from root tips. After polyploidization, microtuber formation was induced in plantlets. Determination of starch content using spectrophotometric analysis, and vitamin C content by titration with 2,6-dichlorphenolindophenol were carried out to assess diploid and octoploid microtubers. Colour of in vitro plantlets was evaluated using the RHS colour chart. Out of 120 nodal segments exposed to oryzalin, 2.5% were octoploids (2n = 96). The most efficient conditions for inducing polyploidy were treatment with 20 μM oryzalin for 24 h, followed by 25 μM oryzalin for 48 h. No tetraploids were obtained. Moreover, flow cytometric analyses of the nuclear DNA contents revealed extensive endopolyploidy in both diploids and octoploids. Morphological differences of the octoploids compared to diploids included lower plantlet height, significantly thicker stems and shorter and darker leaves. Although the average weight of octoploid microtubers was lower compared to diploid ones, they were rich in vitamin C and they had lower starch content. These preliminary results indicate that octoploids may be used in further breeding efforts to obtain low-starch ulluco varieties with improved antioxidant properties.

Keywords

Basellaceae Endopolyploidy Microtubers Oryzalin Polyploidization RHS colour chart Ullucus tuberosus 

Abbreviations

BA

N6-benzyladenine

DAPI

4′,6-diamidino-2-phenylindole

DMSO

Dimethyl sulfoxide

GA3

Gibberellic acid

MS

Murashige and Skoog (1962)

NAA

α-Naphthaleneacetic acid

PA

Ploidy analyser

RHS

Royal horticultural society

Notes

Acknowledgments

The authors are grateful for assistance with chromosome counting provided by Vlasta Jarolimova (Institute of Botany ASCR). This research was financially supported by Internal Grant Agency of Institute of Tropics and Subtropics, Czech University of Life Sciences Prague (Project No. 51110/1312/3108), Academy of Sciences of the Czech Republic (Project No. AV0Z60050516, Institute of Botany ASCR) and Ministry of Education, Youth and Sports of the Czech Republic (Project No. MSM0021620828, Faculty of Science, Charles University in Prague).

References

  1. AOAC (1995) Association of official analytical chemists–official methods of analysis, 16th edn. Arlington, VAGoogle Scholar
  2. Allum JF, Bringloe DH, Roberts AV (2007) Chromosome doubling in a Rosa rugosa Thunb. Hybrid by exposure of in vitro nodes to oryzalin: the effects of node length, oryzalin concentration and exposure time. Plant Cell Rep 26:1977–1984. doi: 10.1007/s00299-007-0411-y PubMedCrossRefGoogle Scholar
  3. Arbizu C, Tapia M (1994) Andean tubers. In: Bermejo JE, León J (eds) Neglected crops: 1492 from a different perspective. Plant production and protection series, vol 26. FAO, Rome, pp 149–163Google Scholar
  4. Awoleye F, Van Duren M, Dolezel J, Novak FJ (1994) Nuclear-DNA content and in vitro induced somatic polyploidization cassava (Manihot esculenta Crantz) breeding. Euphytica 76:195–202CrossRefGoogle Scholar
  5. Barow M (2006) Endopolyploidy in seed plants. Bioessays 28:271–281. doi: 10.1002/bies.20371 PubMedCrossRefGoogle Scholar
  6. Biradar DP, Rayburn AL, Bullock DG (1993) Endopolyploidy in diploid and tetraploid maize (Zea mays L.). Ann Bot 71:417–421. doi: 10.1006/anbo.1993.1053 CrossRefGoogle Scholar
  7. Busch JM, Sangketkit C, Savage GP, Martin RJ, Halloy S, Deo B (2000) Nutritional analysis and sensory evaluation of ulluco (Ullucus tuberosus Loz.) grown in New Zealand. J Sci Food Agr 80:2232–2240CrossRefGoogle Scholar
  8. DeRocher EJ, Harkins KR, Galbraith DW, Bohnet HJ (1990) Developmentally regulated systemic endopolyploidy in succulents with small genomes. Science 250:99–101CrossRefGoogle Scholar
  9. Dhooghe E, Grunewald W, Leus L, Van Labeke MC (2009) In vitro polyploidisation of Helleborus species. Euphytica 165:89–95. doi: 10.1007/s10681-008-9763-9 CrossRefGoogle Scholar
  10. Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J (2011) Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tiss Organ Cult 104:359–373. doi: 10.1007/s11240-010-9786-5 CrossRefGoogle Scholar
  11. Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plant using flow cytometry. Nat Protoc 2:2233–2244PubMedCrossRefGoogle Scholar
  12. Escandón AS, Alderete LM, Hagiwara JC (2007) In vitro polyploidization of Mecardonia tenella, a native plant from South America. Sci Hortic (Amsterdam) 115:56–61. doi: 10.1016/j.scienta.2007.07.006 CrossRefGoogle Scholar
  13. Gantait S, Mandal N, Bhattacharyya S, Das PK (2011) Induction and identification of tetraploids using in vitro colchicine treatment of Gerbera jamesonii Bolus cv. Sciella. Plant Cell Tiss Organ Cult 106:485–493. doi: 10.1007/s11240-011-9947-1 CrossRefGoogle Scholar
  14. Gopal J, Minocha JL, Dhaliwal HS (1998) Microtuberization in potato (Solanum tuberosum L.). Plant Cell Rep 17:794–798. doi: 10.1007/s002990050485 CrossRefGoogle Scholar
  15. Hermann M, Freire I, Pazos C (1999) Compositional diversity of the yacon storage root. In: Impact on a changing world, program report 1997–1998. The International Potato Center (CIP), Lima, Peru, pp 425–432Google Scholar
  16. Huang HP, Gao SL, Chen LL, Jiao XK (2008) In vitro induction and identification of autotetraploids of Dioscorea zingiberensis. In Vitro Cell Dev Biol Plant 44:448–455. doi: 10.1007/s11627-008-9177-3 CrossRefGoogle Scholar
  17. International Standard ISO 6557-2 (1984) Fruits, vegetables and derived products: determination of ascorbic acid content: part 2: routine methods, 1st edn. ISO (International Organization for Standardization)Google Scholar
  18. IPGRI/CIP (2003) Descriptores del Ulluco (Ullucus tuberosus). Instituto Internacional de Recursos Fitogenéticos, Roma, Italia; Centro Internacional de la Papa, Lima PerúGoogle Scholar
  19. Jordan M, Amenábar A, Roveraro C (2002) Rapid in vitro propagation and microtuber production in Ullucus tuberosus (Basellaceae). Gartenbauwissenschaft 67:50–54Google Scholar
  20. Jovtchev G, Barow M, Meister A, Schubert I (2007) Impact of environmental and endogenous factors on endopolyploidization in angiosperms. Environ Exp Bot 60:404–411. doi: 10.1016/j.envexpbot.2006.12.007 CrossRefGoogle Scholar
  21. Kaensaksiri T, Soontornchainaksaeng P, Soonthornchareonnon N, Prathanturarug S (2011) In vitro induction of polyploidy in Centella asiatica (L.) Urban. Plant Cell Tiss Organ Cult. doi: 10.1007/s11240-011-9969-8
  22. Kolano B, Siwinska D, Maluszynska J (2008) Endopolyploidy patterns during development of Chenopodium quinoa. Acta Biol Cracov Bot 51:85–92Google Scholar
  23. Liu G, Li Z, Bao M (2007) Colchicine-induced chromosome doubling in Platanus acerifolia and its effect on plant morphology. Euphytica 157:145–154. doi: 10.1007/s10681-007-9406-6 CrossRefGoogle Scholar
  24. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:473–497CrossRefGoogle Scholar
  25. Nontaswatsri C, Fukai S (2005) Regenerative callus of Dianthus ‘Telstar Scarlet’ showing mixoploidy produce diploid plants. Plant Cell Tiss Org 83:351–355. doi: 10.1007/s11240-005-6621-5 CrossRefGoogle Scholar
  26. Ochatt SJ, Patat-Ochatt EM, Moessner A (2011) Ploidy level determination within the context of in vitro breeding. Plant Cell Tiss Organ Cult 104:329–341. doi: 10.1007/s11240-011-9918-6 CrossRefGoogle Scholar
  27. Pietilä L, Jokela P (1994) Developmental abnormalities in the ovule and embryo sac of ulluco (Ullucus tuberosus) and thein effect on seed set. Euphytica 75:31–39CrossRefGoogle Scholar
  28. Popenoe H (1989) Ulluco. In: National Research Council (ed) Lost crops of the Incas: little-known plants of the Andes with promise for worldwide cultivation, 1st edn. National Academy Press, DC, pp 105–113Google Scholar
  29. Rodriguez Portela de Carvalho JF, de Carvalho CR, Campos OW (2005) In vitro induction of polyploidy in annatto (Bixa orellana). Plant Cell Tissue Organ Cult 80:69–75. doi: 10.1007/s11240-004-8833-5 CrossRefGoogle Scholar
  30. Quesenberry KH, Dampier JM, Lee YY, Smith RL, Acuña CA (2010) Doubling the chromosome number of bahiagrass via tissue culture. Euphytica 175:43–50. doi: 10.1007/s10681-010-0165-4 CrossRefGoogle Scholar
  31. Rêgo MM, Rêgo ER, Bruckner CH, Finger FL, Otoni WC (2011) In vitro induction of autotetraploids from diploid yellow passion fruit mediated by colchicine and oryzalin. Plant Cell Tiss Org. doi: 10.1007/s11240-011-9995-6
  32. Schönswetter P, Suda J, Popp M, Weiss-Schneeweiss H, Brochmann C (2007) Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Mol Phylogen Evol 42:92–103CrossRefGoogle Scholar
  33. Šesek P, Kump B, Bohanec B (2005) Interphase structure of endoreduplicated nuclei in diploid and tetraploid Brassica oleracea L. Acta Biol Cracov Bot 47:93–99Google Scholar
  34. Sperling CR, King SR (1990) Andean tuber crops: worldwide potential. In: Janick J, Simon JE (eds) Advances in new crops. First national symposium. New crops: research development, economics (Indianapolis, IN, USA, 23–26 October 1988). Timber Press, Portland, pp 428–435Google Scholar
  35. Stanys V, Weckman A, Staniene G, Duchovskis P (2006) In vitro induction of polyploidy in Japanese quince (Chaenomeles japonica). Plant Cell Tissue Organ Cult 84:263–268. doi: 10.1007/s11240-005-9029-3 CrossRefGoogle Scholar
  36. Suda J, Krahulcová A, Trávníček P, Krahulec F (2006) Ploidy level versus DNA ploidy level: an appeal for consistent terminology. Taxon 55:447–450CrossRefGoogle Scholar
  37. Tang Z-Q, Chen D-L, Song Z-J, He Y-C, Cai D-T (2010) In vitro induction and identification of tetraploid plants of Paulownia tomentosa. Plant Cell Tissue Organ Cult 102:213–220. doi: 10.1007/s11240-010-9724-6 CrossRefGoogle Scholar
  38. The Royal Horticultural Society (2007) RHS colour chart, 5th edn. The Royal Horticultural Society, LondonGoogle Scholar
  39. Vanstechelman I, Eeckhaut T, Van Huylenbroeck J, Van Labeke MC (2010) Histogenic analysis of chemically induced mixoploids in Spathiphyllum wallisii. Euphytica 174:61–72. doi: 10.1007/s10681-010-0133-z CrossRefGoogle Scholar
  40. Viehmannová I, Cusimamani EF, Bechyne M, Vyvadilová M, Greplová M (2009) In vitro induction of polyploidy in yacon (Smallanthus sonchifolius). Plant Cell Tissue Organ Cult 97:21–25. doi: 10.1007/s11240-008-9494-6 CrossRefGoogle Scholar
  41. Wu JH, Ferguson AR, Murray BG (2011) Manipulation of ploidy for kiwifruit breeding: in vitro chromosome doubling in diploid Actinidia chinensis Planch. Plant Cell Tissue Organ Cult 106:503–511. doi: 10.1007/s11240-011-9949-z CrossRefGoogle Scholar
  42. Zhang ZJ, Mao BZ, Li HZ, Zhou WJ, Takeuchi Y, Yoneyama K (2005) Effect of salinity on physiological characteristics, yield and quality of microtubers in vitro in potato. Acta Physiol Plant 27:481–489. doi: 10.1007/s11738-005-0053-z CrossRefGoogle Scholar
  43. Zhang ZH, Dai HY, Xiao M, Liu X (2008) In vitro induction of tetraploids in Phlox subulata L. Euphytica 159:59–65. doi: 10.1007/s10681-007-9457-8 CrossRefGoogle Scholar
  44. Zhang QY, Luo FX, Liu L, Guo FC (2010) In vitro induction of tetraploids in crape myrtle (Lagerstroemia indica L.). Plant Cell Tiss Organ Cult 101:41–47. doi: 10.1007/s11240-009-9660-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Iva Viehmannová
    • 1
    Email author
  • Martina Trávníčková
    • 1
  • Eva Špatenková
    • 1
  • Monika Černá
    • 2
  • Pavel Trávníček
    • 3
    • 4
  1. 1.Institute of Tropics and SubtropicsCzech University of Life Sciences PraguePragueCzech Republic
  2. 2.Department of Food Technology and Microbiology, Faculty of TechnologyTomas Bata University in ZlinZlínCzech Republic
  3. 3.Institute of BotanyAcademy of Sciences of the Czech RepublicPrůhoniceCzech Republic
  4. 4.Department of Botany, Faculty of ScienceCharles University in PraguePragueCzech Republic

Personalised recommendations