Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 108, Issue 1, pp 73–81 | Cite as

The effects of jasmonic acid and methyl jasmonate on rosmarinic acid production in Mentha × piperita cell suspension cultures

  • Justyna Krzyzanowska
  • Anna Czubacka
  • Lukasz Pecio
  • Marcin Przybys
  • Teresa Doroszewska
  • Anna Stochmal
  • Wieslaw Oleszek
Original Paper


The effects of two elicitors: jasmonic acid and methyl jasmonate on cell growth as well as on rosmarinic acid accumulation in cell suspension cultures of Mentha × piperita were investigated. The highest rosmarinic acid accumulation 117.95 mg g−1 DW (12% DW) was measured 24 h after addition of 100 μM methyl jasmonate. A similar concentration 110.12 mg g−1 DW was detected 48 h after application of 200 μM jasmonic acid. Those values were nearly 1.5 times higher compared to the control sample, without elicitation. There was no substantial influence of elicitors on rosmarinic acid secretion into the culture media. Extracellular concentrations of rosmarinic acid were similar to the values from the control variants. It was documented that suspension cultures of M. piperita treated with elicitors showed a decrease in biomass accumulation when compared to the control.


Mentha × piperita Cell suspension cultures Jasmonic acid Methyl jasmonate Elicitation Rosmarinic acid 



2,4-Dichlorophenoxyacetic acid




Jasmonic acid


Methyl jasmonate


Rosmarinic acid


Linsmayer and Skoog medium


Formic acid


Ultra performance liquid chromatography


Solid phase extraction



The work was performed under the 6th Framework Program of European Union NUTRA-SNACKS project.


  1. Bonfill M, Mangas S, Moyano E, Cusido RM, Palazón J (2011) Production of centellosides and phytosterols in cell suspension cultures of Centella asiatica. Plant Cell Tiss Organ Cult 104:61–67CrossRefGoogle Scholar
  2. Chakraborty A, Chattopadhyay S (2008) Stimulation of menthol production in Mentha piperita cell culture. In Vitro Cell Dev Biol Plant 44:518–524CrossRefGoogle Scholar
  3. Chang JH, Shin JH, Chung IS, Lee HJ (1998) Improved menthol production from chitosan-elicited suspension culture of Mentha piperita. Biotech Lett 20:1097–1099CrossRefGoogle Scholar
  4. Chen JH, Ho CT (1997) Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J Agaric Food Chem 45:2374–2378CrossRefGoogle Scholar
  5. Chun SS, Vattem DA, Lin YT, Shetty K (2005) Phenolic antioxidants from clonal oregano (Origanum vulgare) with antimicrobial activity against Helicobacter pylori. Process Biochem 40:809–816CrossRefGoogle Scholar
  6. Coste A, Vlase L, Halmagyi A, Deliu C, Coldea G (2011) Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell Tiss Organ Cult. doi:  10.1007/s11240-011-9919-5
  7. Creelman RA, Mullet JE (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci USA 92:4114–4119PubMedCrossRefGoogle Scholar
  8. Dillard CJ, German JB (2000) Phytochemicals: nutraceuticals and human health. J Sci Food Agric 80:1744–1756CrossRefGoogle Scholar
  9. Furtado MA, Almeida LCF, Furtado RA, Cunha WR, Tavares DC (2008) Antimutagenicity of rosmarinic acid in Swiss mice evaluated by the micronucleus assay. Mutat Res Genet Toxicol Environ Mutagen 657:150–154CrossRefGoogle Scholar
  10. Gadzovska S, Maury S, Delaunay A, Spasenoski M, Joseph C, Hagége D (2007) Jasmonic acid elicitation of Hypericum perforatum L. cell suspensions and effects on the production of phenylpropanoids and naphtodianthrones. Plant Cell Tiss OrganCult 89:1–13CrossRefGoogle Scholar
  11. Georgiev MI, Kuzeva SL, Pavlov AI, Kovacheva EG, Ilieva MP (2007) Elicitation of rosmarinic acid by Lavandula vera MM cell suspension culture with abiotic elicitors. World J Microbiol Biotechnol 23:301–304CrossRefGoogle Scholar
  12. Hamaguchi T, Ono K, Murase A, Yamada M (2009) Phenolic compounds prevent Alzheimer’s pathology through different effects on the amyloid-beta aggregation pathway. Am J Pathol 175:2557–2565PubMedCrossRefGoogle Scholar
  13. Ilieva M, Pavlov A (1997) Rosmarinic acid production by Lavandula vera MM cell-suspension culture. Appl Microbiol Biotechnol 47:683–688CrossRefGoogle Scholar
  14. Iuvone T, De Filippis D, Esposito G, D’Amico A, Izzo AA (2006) The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-beta peptide-induced neurotoxicity. J Pharmacol Exp Ther 317:1143–1149PubMedCrossRefGoogle Scholar
  15. Kim HK, Oh SR, Lee HK, Huh H (2001) Benzothiadiazole enhances the elicitation of rosmarinic acid production in a suspension culture of Agastache rugosa O. Kuntze. Biotech Lett 23:55–60CrossRefGoogle Scholar
  16. Kim GS, Park SH, Chang YJ, Lim YH, Kim SU (2002) Transformation of menthane monoterpenes by Mentha piperita cell culture. Biotech Lett 24:1553–1556CrossRefGoogle Scholar
  17. Kim OT, Bang KH, Kim YC, Hyun DY, Kim MY, Cha SW (2009) Upregulation of ginsenoside and gene expression related to triterpene biosynthesis in ginseng hairy root cultures elicited by methyl jasmonate. Plant Cell Tiss Organ Cult 98:25–33CrossRefGoogle Scholar
  18. Korsangruang S, Soonthornchareonnon N, Chintapakorn Y, Saralamp P, Prathanturarug S (2010) Effects of abiotic and biotic elicitors on growth and isoflavonoid accumulation in Pueraria candollei var. candollei and P. candollei var. mirifica cell suspension cultures. Plant Cell Tiss Organ Cult 103:333–342CrossRefGoogle Scholar
  19. Krzyzanowska J, Janda B, Pecio L, Stochmal A, Oleszek W, Czubacka A, Przybys M, Doroszewska T (2011) Determination of polyphenols in Mentha longifolia and M. piperita field-grown and in vitro plant samples using UPLC-TQ-MS. J AOAC Int 94:43–50PubMedGoogle Scholar
  20. Lima CF, Fernandes-Ferreira M, Pereira-Wilson C (2006) Phenolic compounds protect HepG2 cells from oxidative damage: Relevance of glutathione levels. Life Sci 79:2056–2068PubMedCrossRefGoogle Scholar
  21. Linsmayer EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127CrossRefGoogle Scholar
  22. Liu XN, Zhang XQ, Zhang SX, Sun JS (2007) Regulation of metabolite production by precursors and elicitors in liquid cultures of Hypericum perforatum. Plant Cell Tiss Organ Cult 91:1–7CrossRefGoogle Scholar
  23. López-Arnaldos T, López–Serrano M, Ros Barceló A, Calderón AA, Zapata JM (1994) Tentative evidence of rosmarinic acid peroxidase in cell cultures from Lavandin (Lavandula × intermedia) flowers. Biochem Mol Biol Int 34:809–816PubMedGoogle Scholar
  24. Lu Y, Foo LY (2001) Antioxidants activities of polyphenols from sage (Salvia officinalis). Food Chem 75:197–202CrossRefGoogle Scholar
  25. Lystvan K, Belokurova V, Sheludko Y, Ingham JL, Prykhodko V et al (2010) Production of bakuchiol by in vitro systems of Psoralea drupacea Bge. Plant Cell Tiss Organ Cult 101:99–103CrossRefGoogle Scholar
  26. Matkowski A (2008) Plant in vitro culture for the production of antioxidants—a review. Biotechnol Adv 26:548–560PubMedCrossRefGoogle Scholar
  27. Matsuno M, Nagatsua A, Ogiharaa Y, Ellisb BE, Mizukami H (2002) CYP98A6 from Lithospermum erythrorhizon encodes 4-coumaroyl-4P-hydroxyphenyllactic acid 3-hydroxylase involved in rosmarinic acid biosynthesis. FEBS Lett 514:219–224PubMedCrossRefGoogle Scholar
  28. Mazumder A, Neamati N, Sunder S, Schulz J, Pertz H, Eich E, Pommier Y (1997) Curcumin analogs with altered potencies against HIV-1 integrase as probes for biochemical mechanisms of drug action. J Med Chem 40:3057–3063PubMedCrossRefGoogle Scholar
  29. Mizukami H, Tabira Y, Ellis BE (1993) Methyl jasmonate-induced rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures. Plant Cell Rep 12:706–709CrossRefGoogle Scholar
  30. Ogata A, Tsuruga A, Matsunob M, Mizukami H (2004) Elicitor-induced rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures: Activities of rosmarinic acid synthase and the final two cytochrome P450-catalyzed hydroxylations. Plant Biotechnol 21:393–396CrossRefGoogle Scholar
  31. Osakabe N, Yasuda A, Natsume M, Sanbongi C, Kato Y, Osawa T, Yoshikawa T (2002) Rosmarinic acid, a major polyphenolic component of Perilla frutescens, reduces lipopolysaccharide (LPS)-induced liver injury in d-galactosamine (d-GalN)- sensitized mice. Free Radic Biol Med 33:798–806PubMedCrossRefGoogle Scholar
  32. Park SH, Kim KS, Suzuki Y, Kim SU (1997) Metabolism of isopiperitenones in cell suspension culture of Mentha piperita. Phytochemistry 44:623–626CrossRefGoogle Scholar
  33. Park DH, Park SJ, Kim JM, Jung WY, Ryu JH (2010) Subchronic administration of rosmarinic acid, a natural prolyl oligipeptidase inhibitor, enhances cognitive performances. Fitoterapia 81:644–648PubMedCrossRefGoogle Scholar
  34. Petersen M (1992) New aspects of rosmarinic acid biosynthesis in cell cultures of Coleus blumei. Planta Med 58:578CrossRefGoogle Scholar
  35. Petersen M, Simmonds MSJ (2003) Rosmarinic acid. Phytochemistry 62:121–125PubMedCrossRefGoogle Scholar
  36. Petersen M, Abdullah Y, Benner J, Eberle D, Gehlen K et al (2009) Evolution of rosmarinic acid biosynthesis. Phytochemistry 70:1663–1679PubMedCrossRefGoogle Scholar
  37. Psotova J, Chlopcikova S, Miketova P, Simanek V (2005) Cytoprotectivity of Prunella vulgaris on doxorubicin-treated rat cardiomyocytes. Fitoterapia 76:556–561PubMedCrossRefGoogle Scholar
  38. Rea G, Antonacci A, Lambreva M, Pastorelli S, Tibuzzi A, et al. (2011) Integrated plant biotechnologies applied to safer and healthier food production: the Nutra-Snack manufacturing chain. Trends Food Sci Technol (in press). doi: 10.1016/j.tifs.2011.04.005
  39. Rhee HS, Cho HY, Son SY, Yoon SYH, Park JM (2010) Enhanced accumulation of decursin and decursinol angelate in root cultures and intact roots of Angelica gigas Nakai following elicitation. Plant Cell Tiss Organ Cult 101:295–302CrossRefGoogle Scholar
  40. Sánchez-Campillo M, Gabaldon JA, Castillo J, Benavente-García O, Del Baño MJ et al (2009) Rosmarinic acid, a photo-protective agent against UV and other ionizing radiations. Food Chem Toxicol 47:386–392PubMedCrossRefGoogle Scholar
  41. Sanchez-Medina A, Etheridge CJ, Hawkes GE, Hylands PJ, Pendry BA, Hughes MJ, Corcoran O (2007) Comparison of rosmarinic acid content in commercial tinctures produced from fresh and dried lemon balm (Melissa officinalis). J Pharm Pharmaceut Sci 10:455–463Google Scholar
  42. Shahidi F, Chandrasekara A (2010) Hydroxycinnamates and their in vitro and in vivo antioxidant activities. Phytochem Rev 9:147–170CrossRefGoogle Scholar
  43. Shetty K (2007) Rosmarinic acid biosynthesis and mechanism of action. In: Shetty K, Paliyath G, Pometto AL, Levin RE (eds) Functional foods and biotechnology. CRC Taylor & Francis Group, Boca Raton, London, New York, pp 187–207Google Scholar
  44. Smetanska I (2008) Production of secondary metabolites using plant cell cultures. Adv Biochem Engin Biotechnol 111:187–228Google Scholar
  45. Soobrattee MA, Neergheen VS, Luximon-Ramma A, Aruoma OI, Bahorun T (2005) Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutation Res 579:200–213PubMedCrossRefGoogle Scholar
  46. Szabo E, Thelen A, Petersen M (1999) Fungal elicitor preparation and methyl jasmonate enhance rosmarinic acid accumulation in suspension cultures of Coleus blumei. Plant Cell Rep 18:485–489CrossRefGoogle Scholar
  47. Tassoni A, Fornalè S, Franceschetti M, Musiani F, Michael AJ, Perry B, Bagni N (2005) Jasmonates and Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures. New Phytol 166:895–905PubMedCrossRefGoogle Scholar
  48. Tewtrakul S, Miyashiro H, Nakamura N, Hattori M, Kawahata T, Otake T, Yoshinaga T, Fujiwara T, Supavita T, Yuenyongsawad S, Rattanasuwon P, Dej-Adisai S (2003) HIV-1 integrase inhibitory substances from Coleus parvifolius. Phytother Res 17:232–239PubMedCrossRefGoogle Scholar
  49. Tsuruga A, Terasaka K, Kamiya K, Satake T, Mizukami H (2006) Elicitor-induced activity of isorinic acid 3’-hydroxylase, an enzyme catalyzing the final step of rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures. Plant Biotechnol 23:297–301CrossRefGoogle Scholar
  50. Vasconsuelo A, Boland R (2007) Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Sci 172:861–875CrossRefGoogle Scholar
  51. Yamada Y, Yasui H, Sakurai H (2006) Suppressive effect of caffeic acid and its derivatives on the generation of UVA-induced reactive oxygen species in the skin of hairless mice and pharmacokinetic analysis on organ distribution of caffeic acid in ddY mice. Photochem Photobiol 82:1668–1676PubMedGoogle Scholar
  52. Yamamura Y, Ogihara Mizukami H Y, Mizukami H (2001) Cinnamic acid 4-hydroxylase from Lithospermum erythrorhizon: cDNA cloning and gene expression. Plant Cell Rep 20:655–662CrossRefGoogle Scholar
  53. Zhao J (2007) Nutraceuticals, nutritional therapy, phytonutrients, and phytotherapy for improvement of human health: a perspective on plant biotechnology application. Recent Pat Biotechnol 1:75–97PubMedCrossRefGoogle Scholar
  54. Zhou B, Wei X, Wang R, Jia J (2010) Quantification of the enzymatic browning and secondary metabolites in the callus culture system of Nigella glandulifera Freyn et Sint. Asian J Tradit Med 5:109–116Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Justyna Krzyzanowska
    • 1
  • Anna Czubacka
    • 2
  • Lukasz Pecio
    • 1
  • Marcin Przybys
    • 2
  • Teresa Doroszewska
    • 2
  • Anna Stochmal
    • 1
  • Wieslaw Oleszek
    • 1
  1. 1.Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant CultivationState Research InstitutePulawyPoland
  2. 2.Department of Plant Breeding and Biotechnology, Institute of Soil Science and Plant CultivationState Research InstitutePulawyPoland

Personalised recommendations