Advertisement

Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 108, Issue 1, pp 1–16 | Cite as

Topolins: A panacea to plant tissue culture challenges?

  • Adeyemi O. Aremu
  • Michael W. Bairu
  • Karel Doležal
  • Jeffrey F. Finnie
  • Johannes Van StadenEmail author
Review

Abstract

Since the discovery of topolins as naturally occurring aromatic cytokinins (CKs), they have emerged as genuine alternatives to the long serving CKs such as benzyladenine, zeatin and kinetin in plant tissue culture (PTC). Globally, the past 15 years has witnessed a surge in the use of topolins and their derivatives in research laboratories. Topolins, especially the meta-topolin and its derivatives have been employed for culture initiation, protocol optimization and for counteracting various in vitro induced physiological disorders in many species. Evidence from various studies indicate the rising popularity and advantages (although not universal for all species) of topolins compared to other CKs. In this review, we assess the use of topolins in PTC with emphasis on their metabolism, structure–activity relations and effect on morphogenesis in vitro. In addition, the review provides a detailed list of species that have been used to study the effect of topolins in comparison with other CKs, the growth parameters affected and recommended concentrations are also provided.

Keywords

Cytokinin metabolism Growth parameters meta-Topolins Micropropagation Physiological disorders 

Abbreviations

Ad

Adenine

AdS

Adenine sulphate

BA

N6 benzyladenine

BA9G

N6-benzyladenine-9-glucoside

BAR

N6-benzyladenine-9-riboside

BPA

6-Benzyl-9-(2-tetrahydropyranylamino)purine

CK

Cytokinin

CPPU

6-(2-Chloro-4-pyridyl)-N′-phenylurea

DHZ

Dihydrozeatin

FmT

meta-Flourotopolin

FmTR

meta-Flourotopolin riboside

IAA

Indole-3-acetic acid

IBA

Indole-3-butyric acid

iP

N6-(2-isopentenyl)adenine

KIN

Kinetin

KINR

Kinetin riboside

MemT

meta-Methoxy topolin

MemTR

meta-Methoxy topolin riboside

MeoT

ortho-Methoxy topolin

MeoTR

ortho-Methoxy topolin riboside

MS

Murashige and Skoog medium

mT

meta-Topolin

mTR

meta-Topolin riboside

oT

ortho-Topolin

PAS

Pasticcino

PGR

Plant growth regulator

PTC

Plant tissue culture

STN

Shoot-tip necrosis

TDZ

Thidiazuron

Z

Zeatin

ZOG1

Zeatin O-glucosyltransferase

ZR

Zeatin riboside

Notes

Acknowledgments

We are grateful to the University of KwaZulu-Natal (Pietermaritzburg) and the National Research Foundation (Pretoria), South Africa as well as Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University (Olomouc), Czech Republic for financial support (Grant no. ED0007/01/01).

References

  1. Amoo S, Finnie JF, Van Staden J (2011) The role of meta-topolins in alleviating micropropagation problems. Plant Growth Regul 63:197–206CrossRefGoogle Scholar
  2. Ascough GD, Van Staden J (2010) Micropropagation of Albuca bracteata and A. nelsonii—indigenous ornamentals with medicinal value. S Afr J Bot 76:579–584CrossRefGoogle Scholar
  3. Ascough GD, Novák O, Pěnčík A, Rolčík J, Strnad M, Erwin JE, Van Staden J (2009) Hormonal and cell division analyses in Watsonia lepida seedlings. J Plant Physiol 166:1497–1507PubMedCrossRefGoogle Scholar
  4. Ascough GD, Swart PA, Finnie JF, Van Staden J (2011) Micropropagation of Romulea minutiflora, Sisyrinchium laxum and Tritonia gladiolaris—Iridaceae with ornamental potential. S Afr J Bot 77:216–221CrossRefGoogle Scholar
  5. Bairu MW, Fennell CW, Van Staden J (2006) The effect of plant growth regulators on somaclonal variation in Cavendish banana (Musa AAA cv. ‘Zelig’). Sci Hortic 108:347–351CrossRefGoogle Scholar
  6. Bairu MW, Stirk WA, Doležal K, Van Staden J (2007) Optimizing the micropropagation protocol for the endangered Aloe polyphylla: can meta-topolin and its derivatives serve as replacement for benzyladenine and zeatin? Plant Cell Tissue Organ Cult 90:15–23CrossRefGoogle Scholar
  7. Bairu MW, Stirk WA, Doležal K, Van Staden J (2008) The role of topolins in micropropagation and somaclonal variation of banana cultivars ‘Williams’ and ‘Grand Naine’ (Musa spp. AAA). Plant Cell Tissue Organ Cult 95:373–379CrossRefGoogle Scholar
  8. Bairu MW, Jain N, Stirk WA, Doležal K, Van Staden J (2009a) Solving the problem of shoot-tip necrosis in Harpagophytum procumbens by changing the cytokinin types, calcium and boron concentrations in the medium. S Afr J Bot 75:122–127CrossRefGoogle Scholar
  9. Bairu MW, Kulkarni MG, Street RA, Mulaudzi RB, Van Staden J (2009b) Studies on seed germination, seedling growth, and in vitro shoot induction of Aloe ferox Mill., a commercially important species. HortScience 44:751–756Google Scholar
  10. Bairu MW, Stirk WA, Van Staden J (2009c) Factors contributing to in vitro shoot-tip necrosis and their physiological interactions. Plant Cell Tissue Organ Cult 98:239–248CrossRefGoogle Scholar
  11. Bairu MW, Aremu AO, Van Staden J (2011a) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173CrossRefGoogle Scholar
  12. Bairu MW, Novák O, Doležal K, Van Staden J (2011b) Changes in endogenous cytokinin profiles in micropropagated Harpagophytum procumbens in relation to shoot-tip necrosis and cytokinin treatments. Plant Growth Regul 63:105–114CrossRefGoogle Scholar
  13. Bajguz A, Piotrowska A (2009) Conjugates of auxin and cytokinin. Phytochemistry 70:957–969PubMedCrossRefGoogle Scholar
  14. Baroja-Fernández E, Aguirreolea J, Martínková H, Hanus J, Strnad M (2002) Aromatic cytokinins in micropropagated potato plants. Plant Physiol Biochem 40:217–224CrossRefGoogle Scholar
  15. Bogaert I, Van Cauter S, Werbrouck SPO, Doležal K (2006) New aromatic cytokinins can make the difference. Acta Hortic 725:265–270Google Scholar
  16. Castelblanque L, García-Sogo B, Pineda B, Moreno V (2010) Efficient plant regeneration from protoplasts of Kalanchoe blossfeldiana via organogenesis. Plant Cell Tissue Organ Cult 100:107–112CrossRefGoogle Scholar
  17. Čatský J, Pospíšilová J, Kamínek M, Gaudinová A, Pulkrábek J, Zahradníček J (1996) Seasonal changes in sugar beet photosynthesis as affected by exogenous cytokinin N6-(m-hydroxybenzyl)adenosine. Biol Plantarum 38:511–518CrossRefGoogle Scholar
  18. Cheesman L, Finnie JF, Van Staden J (2010) Eucomis zambesiaca baker: factors affecting in vitro bulblet induction. S Afr J Bot 76:543–549CrossRefGoogle Scholar
  19. Chen C-M, Kristopeit SM (1981) Metabolism of cytokinin: deribosylation of cytokinin ribonucleoside by adenosine nucleosidase from wheat germ cells. Plant Physiol 68:1020–1023PubMedCrossRefGoogle Scholar
  20. Clemenceau D, Cousseau J, Martin V, Molines H, Wakselman C, Mornet R, Nogue F, Laloue M (1996) Synthesis and cytokinin activity of two fluoro derivatives of N6-Isopentenyladenine. J Agr Food Chem 44:320–323CrossRefGoogle Scholar
  21. Cortizo M, de Diego N, Moncaleán P, Ordás R (2009) Micropropagation of adult Stone Pine (Pinus pinea L.). Trees Struct Funct 23:835–842CrossRefGoogle Scholar
  22. Crocker PJ, Mahadevan A, Wiley JL, Martin BR, Razdan RK (2007) The role of fluorine substitution in the structure-activity relationships (SAR) of classical cannabinoids. Bioorg Med Chem Lett 17:1504–1507PubMedCrossRefGoogle Scholar
  23. De Diego N, Montalbán IA, Moncaleán P (2010) In vitro regeneration of Pinus spp. adult trees: new method for obtaining clonal plants. Acta Hortic 865:361–366Google Scholar
  24. Debergh P, Aitken-Christie J, Cohen D, Grout B, Arnold S, Zimmerman R, Ziv M (1992) Reconsideration of the term ‘vitrification’ as used in micropropagation. Plant Cell Tissue Organ Cult 30:135–140CrossRefGoogle Scholar
  25. Dobránszki J, Magyar-Tábori K, Jámbor-Benczúr E, Kiss E, Lazányi J, Bubán T (2002) Effect of conditioning apple shoots with meta-topolin on the morphogenic activity of in vitro leaves. Acta Agron Hung 50:117–126CrossRefGoogle Scholar
  26. Dobránszki J, Hudak I, Magyar-Tábori K, Jámbor-Benczúr E, Galli Z, Kiss E (2004) Effects of different cytokinins on the shoot regeneration from apple leaves of ‘Royal Gala’ and ‘M.26’. Int J Hort Sci 10:69–75Google Scholar
  27. Dobránszki J, Jámbor-Benczúr E, Reményi ML, Magyar-Tábori K, Hudák I, Kiss E, Galli Z (2005) Effects of aromatic cytokinins on structural characteristics of leaves and their post-effects on subsequent shoot regeneration from in vitro apple leaves of ‘Royal Gala’. Int J Hort Sci 1:41–46Google Scholar
  28. Dobránszki J, Hudak I, Magyar-Tábori K, Jámbor-Benczúr E, Galli Z, Kiss E (2006) How can different cytokinins influence the process of shoot regeneration from apple leaves in ‘Royal Gala’ and ‘M.26’. Acta Hortic 725:191–196Google Scholar
  29. Doil A, Zhang R, Schum A, Serek M, Winkelmann T (2008) In vitro propagation and regeneration of Hydrangea macrophylla Thunb. ‘Nachtigall’. Propag Ornam Plants 8:151–153Google Scholar
  30. Doležal K, Popa I, Kryštof V, Spíchal L, Fojtíková M, Holub J, Lenobel R, Schmülling T, Strnad M (2006) Preparation and biological activity of 6-benzylaminopurine derivatives in plants and human cancer cells. Bioorg Med Chem 14:875–884PubMedCrossRefGoogle Scholar
  31. Doležal K, Popa I, Hauserová E, Spíchal L, Chakrabarty K, Novák O, Kryštof V, Voller J, Holub J, Strnad M (2007) Preparation, biological activity and endogenous occurrence of N6-benzyladenosines. Bioorg Med Chem 15:3737–3747PubMedCrossRefGoogle Scholar
  32. Emmerling F, Orgzall I, Dietzel B, Schulz BW, Reck G, Schulz B (2007) Structural studies on trifluoromethyl substituted 2, 5-diphenyl-1, 3, 4-oxadiazoles. J Mol Struct 832:124–131CrossRefGoogle Scholar
  33. Escalona M, Cejas I, González-Olmedo J, Capote I, Roels S, Cañal MJ, Rodríguez R, Sandoval J, Debergh P (2003) The effect of meta-topolin on plantain propagation using a temporary immersion bioreactor. InfoMusa 12:28–30Google Scholar
  34. Faizal A, Lambert E, Foubert K, Apers S, Geelen D (2011) In vitro propagation of four saponin producing Maesa species. Plant Cell Tissue Organ Cult. doi: 10.1007/s11240-010-9909-z
  35. Fasolo F, Zimmerman RH, Fordham I (1989) Adventitions shoot formation on excised leaves of in vitro grown shoots of apple cultivars. Plant Cell Tissue Organ Cult 16:75–87CrossRefGoogle Scholar
  36. Faure JD, Vittorioso P, Santoni V, Fraisier V, Prinsen E, Barlier I, Van Onckelen H, Caboche M, Bellini C (1998) The PASTICCINO genes of Arabidopsis thaliana are involved in the control of cell division and differentiation. Development 125:909–918PubMedGoogle Scholar
  37. Franck T, Kevers C, Gaspar T, Dommes J, Deby C, Greimers R, Serteyn D, Deby-Dupont G (2004) Hyperhydricity of Prunus avium shoots cultured on gelrite: a controlled stress response. Plant Physiol Biochem 42:519–527PubMedCrossRefGoogle Scholar
  38. Gan S, Amasino RM (1996) Cytokinins in plant senescence: from spray and pray to clone and play. BioEssays 18:557–565CrossRefGoogle Scholar
  39. Gan S, Amasino RM (1997) Making sense of senescence. Molecular genetic regulation and manipulation of leaf senescence. Plant Physiol 113:313–319PubMedGoogle Scholar
  40. Gomez-Leyva JF, Martinez Acosta LA, Lopez Muraira IG, Silos Espino H, Ramirez-Cervantes F, Andrade-Gonzalez I (2008) Multiple shoot regeneration of roselle (Hibiscus sabdariffa L.) from a shoot apex culture system. Int J Bot 4:326–330CrossRefGoogle Scholar
  41. Haberer G, Kieber JJ (2002) Cytokinins. New insights into a classic phytohormone. Plant Physiol 128:354–362PubMedCrossRefGoogle Scholar
  42. Haidoune MB, Raynaud I, O’Connor N, Richomme P, Mornet R, Laloue M (1998) Synthesis and cytokinin activity of new zeatin derivatives. J Agric Food Chem 46:1577–1582CrossRefGoogle Scholar
  43. Hall RH, De Ropp RS (1955) Formation of 6-furfurylaminopurine from DNA breakdown products. J Am Chem Soc 77:6400CrossRefGoogle Scholar
  44. Harrar Y, Bellec Y, Bellini C, Faure J-D (2003) Hormonal control of cell proliferation requires PASTICCINO genes. Plant Physiol 132:1217–1227PubMedCrossRefGoogle Scholar
  45. Hecht SM, Leonard NJ, Schmitz RY, Skoog F (1970) Cytokinins: influence of side-chain planarity of N6-substituted adenines and adenosines on their activity in promoting cell growth. Phytochemistry 9:1907–1913CrossRefGoogle Scholar
  46. Holub J, Hanuš J, Hanke DE, Strnad M (1998) Biological activity of cytokinins derived from ortho- and meta-hydroxybenzyladenine. Plant Growth Regul 26:109–115CrossRefGoogle Scholar
  47. Horgan R, Hewett EW, Purse JG, Wareing PF (1973) A new cytokinin from Populus robusta. Tetrahedron Lett 14:2827–2828CrossRefGoogle Scholar
  48. Horgan R, Hewett EW, Horgan JM, Purse J, Wareing PF (1975) A new cytokinin from Populus × robusta. Phytochemistry 14:1005–1008CrossRefGoogle Scholar
  49. Howell SH, Lall S, Che P (2003) Cytokinins and shoot development. Trends Plant Sci 8:453–459PubMedCrossRefGoogle Scholar
  50. Hutchison CE, Kieber JJ (2002) Cytokinin signaling in arabidopsis. Plant Cell 14:S47–S59PubMedCrossRefGoogle Scholar
  51. Huyluoglu Z, Unal M, Palavan-Unsal N (2008) Cytological evidences of the role of meta-topolin and benzyladenine in barley root tips. Adv Mol Biol 1:31–37Google Scholar
  52. Il’ina E, Dodueva I, Ivanova N, Lutova L (2006) The effect of cytokinins on in vitro cultured inbred lines of Raphanus sativus var. radicula Pers. with genetically determined tumorigenesis. Russ J Plant Physiol 53:514–522CrossRefGoogle Scholar
  53. Iwamura H, Fujita T, Koyama S, Koshimizu K, Kumazawa Z (1980) Quantitative structure-activity relationship of cytokinin-active adenine and urea derivatives. Phytochemistry 19:1309–1319Google Scholar
  54. Jiang ZQ, Guo HW (2010) A comparative genomic analysis of plant hormone related genes in different species. J Genet Genomics 37:219–230PubMedCrossRefGoogle Scholar
  55. Jones L, Martinková H, Strnad M, Hanke D (1996) Occurrence of aromatic cytokinins in oil palm (Elaeis guineensis Jacq.). J Plant Growth Regul 15:39–49CrossRefGoogle Scholar
  56. Kamada-Nobusada T, Sakakibara H (2009) Molecular basis for cytokinin biosynthesis. Phytochemistry 70:444–449PubMedCrossRefGoogle Scholar
  57. Kamínek M (1992) Progress in cytokinin research. Trends Biotechnol 10:159–164CrossRefGoogle Scholar
  58. Kamínek M, Pačes V, Corse J, Challice JS (1979) Effect of stereospecific hydroxylation of N6-(Δ2-Isopentenyl)adenosine on cytokinin activity. Planta 145:239–243CrossRefGoogle Scholar
  59. Kamínek M, Vaněk T, Motyka V (1987) Cytokinin activities of N6-benzyladenosine derivatives hydroxylated on the side-chain phenyl ring. J Plant Growth Regul 6:113–120CrossRefGoogle Scholar
  60. Kataeva NV, Alexandrova IG, Butenko RG, Dragavtceva EV (1991) Effect of applied and internal hormones on vitrification and apical necrosis of different plants cultured in vitro. Plant Cell Tissue Organ Cult 27:149–154CrossRefGoogle Scholar
  61. Kevers C, Coumans M, Coumans-Gillès M-F, Caspar T (1984) Physiological and biochemical events leading to vitrification of plants cultured in vitro. Physiol Plantarum 61:69–74CrossRefGoogle Scholar
  62. Koetle MJ, Finnie JF, Van Staden J (2010) In vitro regeneration in Dierama erectum Hilliard. Plant Cell Tissue Organ Cult 103:23–31CrossRefGoogle Scholar
  63. Kotyk A, Kamínek M, Pulkrábek J, Zahradníček J (1996) Effect of in vivo and in vitro application of the cytokinin N6-(m-hydroxybenzyl)adenosine on respiration and membrane transport processes in sugar beet. Biol Plantarum 38:363–368CrossRefGoogle Scholar
  64. Kubalákova M, Strnad M (1992) The effects of aromatic cytokinins (populins) on micropropagation and regeneration of sugar beet in vitro. Biol Plantarum 34:578–579Google Scholar
  65. Leonard NJ, Henderson TR (1975) Purine ring rearrangements leading to the development of cytokinin activity. Mechanism of the rearrangement of 3-benzyladenine to N6-benzyladenine. J Am Chem Soc 97:4990–4999PubMedCrossRefGoogle Scholar
  66. Leonard NJ, Hecht SM, Skoog F, Schmitz RY (1968) Cytokinins: synthesis of 6-(3-methyl-3-butenylamino)-9-β-d-ribofuranosylpurine (3iPA) and the effect of side-chain unsaturation on the biological activity of isopentenylaminopurines and their ribosides. Proc Natl Acad Sci USA 59:15–21PubMedCrossRefGoogle Scholar
  67. Letham DS (1963) Zeatin, a factor inducing cell division isolated from Zea mays. Life Sci 2:569–573CrossRefGoogle Scholar
  68. Letham DS, Palni LMS (1983) The biosynthesis and metabolism of cytokinins. Annu Rev Plant Physiol 34:163–197CrossRefGoogle Scholar
  69. Libbenga KR, Mennes AM (1995) Hormone binding and signal transduction. In: Davies PJ (ed) Plant hormones: physiology. biochemistry and molecular biology. Kluwer Academic Publishers, The Netherlands, pp 272–297CrossRefGoogle Scholar
  70. Magyar-Tábori K, Dobránszki J, Jámbor-Benczúr E, Bubán T, Lazányi J, Szalai J, Ferenczy A (2001) Post-effects of cytokinins and auxin levels of proliferation media on rooting ability of in vitro apple shoots (Malus domestica Borkh.) ‘Red Fuji’. Int J Hort Sci 7:26–29Google Scholar
  71. Magyar-Tábori K, Dobránszki J, Jámbor-Benczúr E (2002) High in vitro shoot proliferation in the apple cultivar Jonagold induced by benzyladenine analogues. Acta Agron Hung 50:191–195CrossRefGoogle Scholar
  72. Magyar-Tábori K, Dobránszki J, Teixeira da Silva J, Bulley S, Hudák I (2010) The role of cytokinins in shoot organogenesis in apple. Plant Cell Tissue Organ Cult 101:251–267CrossRefGoogle Scholar
  73. Magyar-Tábori K, Dobránszki J, Hudák I (2011) Effect of cytokinin content of the regeneration media on in vitro rooting ability of adventitious apple shoots. Sci Hortic. doi: 10.1016/j.scienta.2011.05.011
  74. Makara AM, Rubaihayo PR, Magambo MJS (2010) Carry-over effect of thidiazuron on banana in vitro proliferation at different culture cycles and light incubation conditions. Afr J Biotechnol 9:3079–3085Google Scholar
  75. Malá J, Máchová P, Cvrčková H, Karady M, Novák O, Mikulík J, Hauserová E, Greplová J, Strnad M, Doležal K (2009) Micropropagation of wild service tree Sorbus torminalis [L.] Crantz): the regulative role of different aromatic cytokinins during organogenesis. J Plant Growth Regul 28:341–348CrossRefGoogle Scholar
  76. Mata-Rosas M, Baltazar-García R, Moon P, Hietz P, Luna-Monterrojo V (2010) In vitro regeneration of Lycaste aromatica (Graham ex Hook) Lindl. (Orchidaceae) from pseudobulb sections. Plant Biotechnol Rep 4:157–163CrossRefGoogle Scholar
  77. Matsubara S (1980) Structure-activity relationships of cytokinins. Phytochemistry 19:2239–2253CrossRefGoogle Scholar
  78. Meiners J, Schwab M, Szankowski I (2007) Efficient in vitro regeneration systems for Vaccinium species. Plant Cell Tissue Organ Cult 89:169–176CrossRefGoogle Scholar
  79. Meyer EM, Touchell DH, Ranney TG (2009) In vitro shoot regeneration and polyploid induction from leaves of Hypericum species. HortScience 44:1957–1961Google Scholar
  80. Miller CO, Skoog F, Von Saltza MH, Strong FM (1955) Kinetin, a cell division factor from deoxyribonucleic acid. J Am Chem Soc 77:1392–1393CrossRefGoogle Scholar
  81. Mithila J, Murch SJ, KrishnaRaj S, Saxena PK (2001) Recent advances in Pelargonium in vitro regeneration systems. Plant Cell Tissue Organ Cult 67:1–9CrossRefGoogle Scholar
  82. Mok MC, Mok DWS (1985) The metabolism of [14C]-thidiazuron in callus tissues of Phaseolus lunatus. Physiol Plantarum 65:427–432CrossRefGoogle Scholar
  83. Mok MC, Martin RC, Dobrev PI, Vanková R, Shing Ho P, Yonekura-Sakakibara K, Sakakibara H, Mok DWS (2005) Topolins and hydroxylated thidiazuron derivatives are substrates of cytokinin O-glucosyltransferase with position specificity related to receptor recognition. Plant Physiol 137:1057–1066PubMedCrossRefGoogle Scholar
  84. Moncaleán P, Rodríguez A, Fernández B (2001) In vitro response of Actinidia deliciosa explants to different BA incubation periods. Plant Cell Tissue Organ Cult 67:257–266CrossRefGoogle Scholar
  85. Moyo M, Finnie JF, Van Staden J (2011) Recalcitrant effects associated with the development of basal callus-like tissue on caulogenesis and rhizogenesis in Sclerocarya birrea. Plant Growth Regul 63:187–195CrossRefGoogle Scholar
  86. Murthy B, Murch S, Saxena P (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant 34:267–275CrossRefGoogle Scholar
  87. Nam HG (1997) The molecular genetic analysis of leaf senescence. Curr Opin Biotechnol 8:200–207PubMedCrossRefGoogle Scholar
  88. Nas MN, Bolek Y, Sevgin N (2010) The effects of explant and cytokinin type on regeneration of Prunus microcarpa. Sci Hortic 126:88–94CrossRefGoogle Scholar
  89. Niedz RP, Evens TJ (2010) The effects of benzyladenine and meta-topolin on in vitro shoot regeneration of a Citrus citrandarin rootstock. Res J Agric Biol Sci 6:45–53Google Scholar
  90. Nirmalram J, Tamilselvi D, Muthiah P (2011) Hydrogen bonded supramolecular assembly in N6-benzyladeninium nitrate and N6-benzyladeninium 3-hydroxy picolinate: a synthetic cytokinin. J Chem Crystallogr 41:864–867CrossRefGoogle Scholar
  91. Nishikawa S, Kumazawa Z, Mizutani H, Kashimura N (1986) Substituent-directing effect on cytokinin activity of the α-double bond in the 6-substituent of purines. Agric Biol Chem 50:1089–1091CrossRefGoogle Scholar
  92. Noodén LD (1988) The phenomena of senescence and aging. In: Noodén LD, Leopold AC (eds) Senescence and Aging in Plants. Academic Press, Inc., San Diego, California, USA, pp 1–50Google Scholar
  93. Palavan-Ünsal N, Çağ S, Çetin E (2002a) Growth responses of excised radish cotyledons to meta-topolin. Can J Plant Sci 82:191–194CrossRefGoogle Scholar
  94. Palavan-Ünsal N, Çağ S, Çetin E, Büyüktunçer D (2002b) Retardation of senescence by meta-topolin in wheat leaves. J Cell Mol Biol 1:101–108Google Scholar
  95. Palavan-Ünsal N, Çağ S, Çetin E (2004) The role of meta-topolin in senescence of wheat leaf segments. J Cell Mol Biol 3:23–31Google Scholar
  96. Palmer MV, Horgan R, Wareing PF (1981) Cytokinin metabolism in Phaseolus vulgaris L.: I: variations in cytokinin levels in leaves of decapitated plants in relation to lateral bud outgrowth. J Exp Bot 32:1231–1241CrossRefGoogle Scholar
  97. Pan X, Welti R, Wang X (2008) Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry 69:1773–1781PubMedCrossRefGoogle Scholar
  98. Pâques M (1991) Vitrification and micropropagation: causes, remedies and prospects. Acta Hortic 289:283–290Google Scholar
  99. Pâques M, Boxus P (1987) Vitrification: review of literture. Acta Hortic 212:155–166Google Scholar
  100. Parimalan R, Giridhar P, Ravishankar G (2011) Enhanced shoot organogenesis in Bixa orellana L. in the presence of putrescine and silver nitrate. Plant Cell Tissue Organ Cult 105:285–290CrossRefGoogle Scholar
  101. Pospíšilová J, Synková H, Haisel D, Čatský J, Wilhelmová N, Šrámek F (1999) Effect of elevated CO2 concentration on acclimation of tobacco plantlets to ex vitro conditions. J Exp Bot 50:119–126CrossRefGoogle Scholar
  102. Pospíšilová J, Synková H, Haisel D, Semorádová S (2007) Acclimation of plantlets to ex vitro conditions: effects of air humidity, irradiance, CO2 concentration and abscisic acid (a review). Acta Hortic 748:29–38Google Scholar
  103. Roels S, Escalona M, Cejas I, Noceda C, Rodriguez R, Canal MJ, Sandoval J, Debergh P (2005) Optimization of plantain (Musa AAB) micropropagation by temporary immersion system. Plant Cell Tissue Organ Cult 82:57–66CrossRefGoogle Scholar
  104. Rosales MSD, Solís ÁGA, Méndezy NLV, Balch EPM (2008) Effect of cytokinins on the in vitro propagation of Mexican Agaves. Rev Fitotec Mex 31:317–322Google Scholar
  105. Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449PubMedCrossRefGoogle Scholar
  106. Salvi ND, George L, Eapen S (2002) Micropropagation and field evaluation of micropropagated plants of turmeric. Plant Cell Tissue Organ Cult 68:143–151CrossRefGoogle Scholar
  107. Schmülling T (2004) Cytokinin. In: Lennarz WJ, Lane MD (eds) Encyclopedia of Biological Chemistry. Academic Press/Elsevier Science, New York, USA, pp 1–6Google Scholar
  108. Skoog F, Armstrong DJ (1970) Cytokinins. Annu Rev Plant Physiol 21:359–384CrossRefGoogle Scholar
  109. Skoog F, Hamzi HQ, Szweykowska AM, Leonard NJ, Carraway KL, Fujii T, Helgeson JP, Loeppky RN (1967) Cytokinins: structure/activity relationships. Phytochemistry 6:1169–1192CrossRefGoogle Scholar
  110. Smulders M, de Klerk G (2011) Epigenetics in plant tissue culture. Plant Growth Regul 63:137–146CrossRefGoogle Scholar
  111. Strnad M (1997) The aromatic cytokinins. Physiol Plantarum 101:674–688CrossRefGoogle Scholar
  112. Strnad M, Hanuš J, Vanek T, Kamínek M, Ballantine JA, Fussell B, Hanke DE (1997) Meta-topolin, a highly active aromatic cytokinin from poplar leaves (Populus × canadensis Moench., cv. Robusta). Phytochemistry 45:213–218CrossRefGoogle Scholar
  113. Subbaraj AK (2011) Topolins: current research status and applications. Int J Biores Stress Manag 2:10–25Google Scholar
  114. Tarkowská D, Doležal K, Tarkowski P, Åstot C, Holub J, Fuksová K, Schmülling T, Sandberg G, Strnad M (2003) Identification of new aromatic cytokinins in Arabidopsis thaliana and Populus × canadensis leaves by LC-(+)ESI-MS and capillary liquid chromatography/frit-fast atom bombardment mass spectrometry. Physiol Plantarum 117:579–590CrossRefGoogle Scholar
  115. Tarkowski P, Ge L, Yong JWH, Tan SN (2009) Analytical methods for cytokinins. Trends Anal Chem 28:323–335CrossRefGoogle Scholar
  116. Taylor NJ, Stirk WA, Van Staden J (2003) The elusive cytokinin biosynthetic pathway. S Afr J Bot 69:269–281Google Scholar
  117. Teklehaymanot T, Wannakrairoj S, Pipattanawong N (2010) Meta-topolin for pineapple shoot multiplication under three in vitro systems. Am Euras J Agr Environ Sci 7:157–162Google Scholar
  118. Trávníček Z, Marek J, Doležal K, Strnad M (1997) The structure of 6-(2-hydroxybenzylamino)purine acetic acid solvate. Z Kristallogr 212:538–541CrossRefGoogle Scholar
  119. Valero-Aracama C, Kane M, Wilson S, Philman N (2010) Substitution of benzyladenine with meta-topolin during shoot multiplication increases acclimatization of difficult- and easy-to-acclimatize sea oats (Uniola paniculata L.) genotypes. Plant Growth Regul 60:43–49CrossRefGoogle Scholar
  120. Van Staden J, Crouch NR (1996) Benzyladenine and derivatives—their significance and interconversion in plants. Plant Growth Regul 19:153–175CrossRefGoogle Scholar
  121. Van Staden J, Cook EL, Noodén LD (1988) Cytokinins and senescence. In: Noodén LD, Leopold AC (eds) Senescence and Aging in Plants. Academic Press, Inc., San Diego, California, USA, pp 281–328Google Scholar
  122. Vasil I (2008) A history of plant biotechnology: from the cell theory of Schleiden and Schwann to biotech crops. Plant Cell Rep 27:1423–1440PubMedCrossRefGoogle Scholar
  123. Vasudevan R, Van Staden J (2011) Cytokinin and explant types influence in vitro plant regeneration of Leopard Orchid (Ansellia africana Lindl.). Plant Cell Tissue Organ Cult. doi: 10.1007/s11240-011-9964-0
  124. Vinayak V, Dhawan AK, Gupta VK (2009) Efficacy of non-purine and purine cytokinins on shoot regeneration in vitro in sugarcane. Indian J Biotechnol 8:227–231Google Scholar
  125. Wagner BM, Beck E (1993) Cytokinins in the perennial herb Urtica dioica L. as influenced by its nitrogen status. Planta 190:511–518CrossRefGoogle Scholar
  126. Werbrouck SPO (2010) Merits and drawbacks of new aromatic cytokinins in plant tissue culture. Acta Hortic 865:103–108Google Scholar
  127. Werbrouck S, Van der Jeugt B, Dewitte W, Prinsen E, Van Onckelen H, Debergh P (1995) The metabolism of benzyladenine in Spathiphyllum floribundum ‘Schott Petite’ in relation to acclimatisation problems. Plant Cell Rep 14:662–665CrossRefGoogle Scholar
  128. Werbrouck SPO, Strnad M, Van Onckelen HA, Debergh PC (1996) Meta-topolin, an alternative to benzyladenine in tissue culture? Physiol Plantarum 98:291–297CrossRefGoogle Scholar
  129. Winarto B, Rachmawati F, Pramanik D, Teixeira da Silva J (2011) Morphological and cytological diversity of regenerants derived from half-anther cultures of anthurium. Plant Cell Tissue Organ Cult 105:363–374CrossRefGoogle Scholar
  130. Wojtania A (2010) Effect of meta-topolin on in vitro propagation of Pelargonium × hortorum and Pelargonium × hederaefolium cultivars. Acta Soc Bot Pol 79:101–106Google Scholar
  131. Wojtania A, Gabryszewska E (2001) Effect of cytokinins and amino acids on multiplication of Pelargonium cultivars. Acta Soc Bot Pol 70:203–207Google Scholar
  132. Woo HR, Kim JH, Nam HG, Lim PO (2004) The delayed leaf senescence mutants of Arabidopsis, ore1, ore3, and ore9 are tolerant to oxidative stress. Plant Cell Physiol 45:923–932PubMedCrossRefGoogle Scholar
  133. Zatloukal M, Gemrotová M, Doležal K, Havlíček L, Spíchal L, Strnad M (2008) Novel potent inhibitors of A. thaliana cytokinin oxidase/dehydrogenase. Bioorg Med Chem 16:9268–9275PubMedCrossRefGoogle Scholar
  134. Zhang C, Whiting MD (2011) Improving ‘Bing’ sweet cherry fruit quality with plant growth regulators. Sci Hortic 127:341–346CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Adeyemi O. Aremu
    • 1
  • Michael W. Bairu
    • 1
  • Karel Doležal
    • 2
    • 3
  • Jeffrey F. Finnie
    • 1
  • Johannes Van Staden
    • 1
    Email author
  1. 1.Research Centre for Plant Growth and Development, School of Biological and Conservation SciencesUniversity of KwaZulu-Natal PietermaritzburgScottsvilleSouth Africa
  2. 2.Laboratory of Growth RegulatorsInstitute of Experimental Botany AS CROlomouc-HoliceCzech Republic
  3. 3.Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of SciencePalacký UniversityOlomoucCzech Republic

Personalised recommendations