Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Transgenic sweet potato expressing mammalian cytochrome P450


Sweet potato [Ipomoea batatas (L.) Lam] is considered to be recalcitrant to transformation and regeneration because of its genotype-dependent in vitro responses. The lack of a genotype-independent transformation and regeneration system limits biotechnological applications in this plant species. To establish a transformation system for a diverse group of sweet potato genotypes, we examined sweet potato regeneration after transformation in five cultivars. An Agrobacterium tumefaciens transformation system was used for the introduction of mammalian cytochrome P450 genes, which are capable of conferring herbicide tolerance. Among the different factors studied, including explant type, plasmid vectors, and auxin type in the initiation media, auxin type had the greatest effect on the regeneration response. Of the auxins tested, only 4-fluorophenoxyacetic acid (4FA) induced regeneration from all cultivars. In terms of the quality of calli, 4FA promoted the induction of type I calli, which were capable of somatic embryo formation, whereas type II calli fail to produce somatic embryos. The frequency of somatic embryo formation was also affected by the composition of the embryo-induction media. Transgenic plants were regenerated from all cultivars. The stable integration and expression of transgenes was confirmed by several approaches. This Agrobacterium-mediated transformation system should be applicable to a wide range of sweet potato cultivars.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6



Abscisic acid


2,4-Dichlorophenoxyacetic acid


4-Fluorophenoxyacetic acid

GA3 :

Gibberellic acid A3




Indole-3-acetic acid


Linsmaier and Skoog medium


  1. Al-Mazrooei S, Bhatti MH, Henshaw GG (1997) Optimisation of somatic embryogenesis in fourteen cultivars of sweet potato [Ipomoea batatas (L.) Lam.]. Plant Cell Rep 16:710–714

  2. Aloufa MA (2002) Some factors affecting the callus induction and shoot formation in two cultivars of Sweet potato (Ipomoea batatas L. POIS). Cienc Agrotec Lavras 26:964–969

  3. Block MD, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Rao NM, Thompson C, Van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expressing of a detoxifying enzymes. EMBO J 6:2513

  4. Centro Internacional de la Papa (CIP) (2008) Sweetpotato I. batatas. Available at: http://www.cipotato.org/sweetpotato. Accessed 15 April, 2008

  5. Chee RP, Cantliffe DJ (1988) Somatic embryony patterns and plant regeneration in Ipomoea batatas Poir. In Vitro Cell Dev Bio 24:955–958

  6. Chee RP, Schultheis JR, Cantliffe DJ (1990) Plant recovery from sweetpotato somatic embryos. Hortic Sci 25:795–797

  7. Choi HJ, Chandrasekhar T, Lee HY, Kim KM (2007) Production of herbicide-resistant transgenic sweet potato plants through Agrobacterium tumefaciens method. Plant Cell Tiss Organ Cult 91:235–242

  8. Cipriani G, Michaud D, Brunelle F, Golmirzaie A, Zhang DP (1999) Expression of soybean proteinase inhibitor in sweetpotato. CIP Program Rep 1997–1998:271–277

  9. Cipriani G, Fuentes S, Bello V, Salazar LF, Ghislain M, Zhang DP (2001) Transgene expression of rice cysteine proteinase inhibitors for the development of resistance against sweetpotato feathery mottle virus. CIP Program Rep 1999–2000:267–271

  10. Dhir SK, Oglesby J, Bhagsari AS (1998) Plant regeneration via embryogenesis, and transient gene expression in sweetpotato protoplasts. Plant Cell Rep 17:665–669

  11. Gama MICS, Leite RP Jr, Cordeiro AR, Cantliffe DJ (1996) Transgenic sweetpotato plants obtained by Agrobacterium tumefaciens-mediated transformation. Plant Cell Tiss Org Cult 46:231–244

  12. Garvel NJ, Jarret RL (1991) A modified CTAB DNA extraction procedure for Muss and lpomoea. Plant Mol Biol Rep 9:262–266

  13. Guo JM, Liu QC, Zhai H, Wang YP (2006) Regeneration of plants from Ipomoea cairica L. protoplasts and production of somatic hybrids between I. cairica L. and sweetpotato, I. batatas (L.) Lam. Plant Cell Tiss Organ Cult 87:321–327

  14. Hansen G, Shillito RD, Chilton MD (1997) T-strand integration in maize protoplasts after codelivery of a T-DNA substrate and virulence genes. Proc Natl Acad Sci USA 94:11726–11730

  15. Hetherington AM, Quatrano RS (1991) Mechanism of action of abscisic acid at the cellular level: Tansley Review No 31. New Phytol 119:9–32

  16. Inui H, Ueyama Y, Shiota N, Ohkawa Y, Ohkawa H (1999) Herbicide metabolism and cross-tolerance in transgenic potato plants expressing human CYP1A1. Pestic Biochem Physiol 64:33–46

  17. Inui H, Kodama T, Ohkawa Y, Ohkawa H (2000) Herbicide metabolism and cross-tolerance in transgenic potato plants co-expressing human CYP1A1, CYP2B6, and CYP2C19. Pestic Biochem Physiol 66:116–129

  18. Islam MS, Yoshimoto M, Yahara S, Okuno S, Ishiguro K, Yamakawa O (2002) Identification and characterization of foliar polyphenolic composition in sweet potato (Ipomoea batatas L.) genotypes. J Agric Food Chem 50:3718–3722

  19. Joshi RL, Joshi V (1991) Strategies for expression of foreign genes in plants. FEBS Lett 281:l–8

  20. Kawahigashi H, Hirose S, Inui H, Ohkawa H, Ohkawa Y (2005) Enhanced herbicide cross-tolerance in transgenic rice plants coexpressing human CYP1A1, CYP2B6, and CYP2C19. Plant Sci 168:773–781

  21. Kimura T, Otani M, Noda T, Ideta O, Shimada T, Saito A (2001) Absence of amylose in sweetpotato [Ipomoea batatas (L.) Lam.] following the introduction of granule-bound starch synthase cDNA. Plant Cell Rep 20:663–666

  22. Lawton R, Winfield S, Daniell H, Bhagsagi AS, Dhir SK (2000) Expression of green-fluorescent protein gene in sweet potato tissues. Plant Mol Biol Rep 18:139a–139i

  23. Lim S, Kim YH, Kim SH, Kwon SY, Lee HS, Kim JS, Cho KW, Pack KY, Kwak SS (2007) Enhanced tolerance of transgenic sweetpotato plants that express both CuZnSOD and APX in chloroplasts to methyl viologen-mediated oxidative stress and chilling. Mol Breed 19:227–239

  24. Linsmaier EF, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127

  25. Liu JR, Cantliffe DJ (1984) Organogenesis and plant regeneration in tissue cultures of sweet potato (Ipomoea batatas Poir). Plant Cell Rep 3:112–115

  26. Liu QC, Zhai H, Wang Y, Zhang DP (2001) Efficient plant regeneration from embryogenic suspension cultures of sweetpotato. In Vitro Cell Dev Biol-Plant 37:564–567

  27. Lockhart JAR, Samuel A, Greaves MP (1990) The evolution of weed control in British agriculture. In: Hance RJ, Holly K (eds) Weed control handbook: principles. Blackwell, Oxford, pp 43–74

  28. López A, Zaldúa Z, García M, García R (1996) Modification of sporamin gene from sweet potato with a synthetic DNA fragment. Nucleotide sequence and expression in E. coli. Biotecnología Aplicada 13:36–42

  29. Lowe JM, Hamilton WDO, Newell CA (1994) Genetic transformation in Ipomoea batatas (L.) Lam (sweetpotato). In: Bajaj YBS (ed) Biotechnology in agriculture and forestry, vol 29. Plant protoplasts and genetic engineering V. Springer, Berlin Heidelberg New York, pp 308–320

  30. Luo HR, Santa Maria M, Benavides J, Zhang DP, Zhang YZ, Ghislain M (2006) Rapid genetic transformation of sweetpotato (Ipomoea batatas (L.) Lam.) via organogenesis. Afr J Biotechnol 5:1851–1857

  31. Martin FW, Jones A (1971) Flowering and fertility changes in six generations of open-pollinated sweet potato. Am J Hortic Sci 96:493–495

  32. Meijer EGM, Brown DCW (1987) Role of exogenous reduced nitrogen and sucrose in rapid high frequency somatic embryogenesis in Medicago sativa. Plant Cell Tiss Organ Cult 10:11–19

  33. Mitchell TD, Bhagsari AS, Ozias-Akins P, Dhir SK (1998) Electroporation-mediated transient gene expression in intact cells of sweetpotato. In Vitro Plant 34(4):319–324

  34. Morán R, García R, López A, Zaldúa Z, Mena J, García M, Armas R, Somonte D, Rodríguez J, Gómez M, Pimentel E (1998) Transgenic sweet potato plants carrying the delta-endotoxin gene from Bacillus thuringiensis var. tenebrionis. Plant Sci 139:175–184

  35. Newell CA, Lowe JM, Merryweather A, Rooke LM, Hamilton WDO (1995) Transformation of sweetpotato (Ipomoea batatas (L.) Lam.) with Agrobacterium tumefaciens and regeneration of plants expressing cowpea trypsin inhibitor and snowdrop lectin. Plant Sci 107:215–227

  36. Nickle TC, Yeung EC (1994) Further evidence of a role for abscisic acid in conversion of somatic embryos of Daucus carota. In Vitro Cell Dev Biol 30P:96–103

  37. Okada Y, Saito A, Nishiguchi M, Kimaru T, Mori M, Hanada K, Sakai J, Miyazaki C, Matsuda Y, Murata T (2001) Virus resistance in transgenic sweet potato [Ipomoea batatas L. (Lam.)] expressing the coat protein gene of sweet potato feathery mottle virus. Theor Appl Genet 103:743–751

  38. Otani M, Shimada T (1996) Efficient embryogenic callus formation in sweet potato (Ipomoea batatas (L.) Lam.). Breed Sci 46:257–260

  39. Otani M, Mii M, Handa T, Kamada H, Shimada T (1993) Transformation of sweet potato (Ipomoea batatas (L.) Lam.) plants by Agrobacterium rhizogenes. Plant Sci 94:151–159

  40. Otani M, Shimada T, Kimura T, Saito A (1998) Transgenic plant production from embryogenic callus of sweetpotato (Ipomoea batatas (L.) Lam.) using Agrobacterium tumefaciens. Plant Biotechnol 15:11–16

  41. Otani M, Wakita Y, Shimada T (2001) Genetic transformation of sweet potato (Ipomoea batatas (L.) Lam.) by Agrobacterium tumefaciens. Acta Hortic 560:193–196

  42. Otani M, Wakita Y, Shimada T (2003) Production of herbicide-resistant sweet potato (Ipomoea batatas (L.) Lam.) plants by Agrobacterium tumefaciens-mediated transformation. Breed Sci 53:145–148

  43. Prakash CS, Varadarajan U (1992) Genetic transformation of sweetpotato by particle bombardment. Plant Cell Rep 11:53–57

  44. Shah DM, Turner NE, Fischhoff DA, Horsch RB, Rogers SG, Fraley RT, Jaworski EG (1987) The introduction and expression of foreign genes in plants. Biotechnol Genet Eng Rev 5:82–107

  45. Shimada T, Otani M, Hamada T, Kim SH (2006) Increase of amylose content of sweetpotato starch by RNA interference of the starch branching enzyme II gene (IbSBEII). Plant Biotechnol 23:85–90

  46. Shiota N, Nagasawa A, Sakaki T, Yabusaki Y, Ohkawa H (1994) Herbicide-resistant tobacco plants expressing the fused enzyme between rat cytochrome P4501A1 (CYP1A1) and yeast NADPH-cytochrome P450 oxidoreductase. Plant Physiol 106(1):17–23

  47. Sihachakr D, Ducreux G (1987) Plant regeneration from protoplast culture of sweet potato (Ipomoea batatas Lam.). Plant Cell Rep 6:326–328

  48. Sihachakr D, Haïcour R, Cavalcante JMA, Umboh I, Nzoghé D, Servaes A, Ducreux G (1997) Plant regeneration in sweet potato (Ipomoea batatas L., Convolvulaceae). Euphytica 96:143–152

  49. Song GQ, Honda H, Yamaguchi KI (2004) Efficient Agrobacterium tumefaciens-mediated transformation of sweetpotato (Ipomoea batatas (L.) Lam.) from stem explants using a two-step kanamycin-hygromycin selection method. In Vitro Cell Dev Biol-Plant 40:359–365

  50. Thomas B, Takagia T, Miyazakia A, Otanic M, Shimadac T, Kusanoa T (2005) Production of mouse adiponectin, an anti-diabetic protein, in transgenic sweet potato plants. J Plant Physiol 162:1169–1176

  51. Triqui ZEA, Guédira A, Chlyah A, Chlyah H, Souvannavong V, Haïcour R, Sihachakr D (2008) Effect of genotype, gelling agent, and auxin on the induction of somatic embryogenesis in sweet potato (Ipomoea batatas Lam.). CR Biologies 331:198–205

  52. Wakita Y, Otani M, Hamada T, Mori M, Iba K, Shimada T (2001) A tobacco microsomal ω-3 fatty acid desaturase gene increases the linolenic acid content in transgenic sweetpotato (Ipomoea batatas). Plant Cell Rep 20:244–249

  53. Woolfe JA (1992) Sweetpotato, an untapped food resource. Cambridge University Press, New York

  54. Xing Y, Yang Q, Ji Q, Luo Y, Zhang Y, Gu K, Dengzhan (2007) Optimization of Agrobacterium-mediated transformation parameters for sweet potato embryogenic callus using β-glucuronidase (GUS) as a reporter. Afr J Biotechnol 6(22):2578–2584

  55. Xing YJ, Ji Q, Yang Q, Luo YM, Li Q, Wang X (2008) Studies on Agrobacterium-mediated genetic transformation of embryogenic suspension cultures of sweet potato. Afr J Biotechnol 7(5):534–540

  56. Yi G, Shin Y-M, Choe G, Shin B, Kim YS, Kim KM (2007) Production of herbicide-resistant sweet potato plants transformed with the bar gene. Biotechnol Lett 29:669–675

  57. Yu B, Zhai H, Wang Y, Zang N, He S, Liu Q (2007) Efficient Agrobacterium tumefaciens-mediated transformation using embryogenic suspension cultures in sweetpotato, Ipomoea batatas (L.). Lam. Plant Cell Tiss Org Cult 90:265–273

  58. Zhai H, Liu QC (2003) Studies on the genetic transformation of embryogenic suspension culture in sweet potato. Sci Agric Sinica 36:487–491

  59. Zheng Q, Dessai AP, Prakash CS (1996) Rapid and repetitive plant regeneration in sweet potato via somatic embryogenesis. Plant Cell Rep 15:381–385

Download references


This research was supported in part by Grant-in-Aid no. 21248001 from the Japan Society for the Promotion of Science (JSPS). N.A. would like to thank Dr. A. Kikuchi, University of Tsukuba, Japan, for his invaluable comments and critical suggestions in the preparation of this manuscript. The authors would also like to thank Mr. Naka and Mr. M. Kanazawa for the basic tissue culture work at Department of Biotechnology, Kinki University, Japan. We also thank Prof. H. Ohkawa, Fukuyama University, Japan, for providing the gene constructs and Dr. O. Yamakawa, NARO, Japan, for providing the plant material.

Author information

Correspondence to Nadia Anwar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Anwar, N., Watanabe, K.N. & Watanabe, J.A. Transgenic sweet potato expressing mammalian cytochrome P450. Plant Cell Tiss Organ Cult 105, 219–231 (2011). https://doi.org/10.1007/s11240-010-9855-9

Download citation


  • Ipomoea batatas
  • Agrobacterium tumefaciens
  • Genotype-independent transformation
  • Herbicide tolerance
  • Cytochrome P450