Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 104, Issue 1, pp 125–130 | Cite as

Rapid and repetitive plant regeneration of Aralia elata Seem. via somatic embryogenesis

  • Jin-Ling Dai
  • Xiao Tan
  • Ya-Guang Zhan
  • Yun-Qiang Zhang
  • Shuang Xiao
  • Ying Gao
  • Dong-Wei Xu
  • Tao Wang
  • Xiao-Chun Wang
  • Xiang-Ling You
Research Note

Abstract

In this work, we established a rapid and repetitive plant regeneration system for Aralia elata Seem. via primary and secondary somatic embryogenesis. Primary somatic embryogenesis was induced using leaf disks, petiole, and root segments, individually cultured for 5 weeks on Schenk and Hildebrandt (SH) (1972) medium with 0–5.0 mg/l indolebutyric acid (IBA). Our investigation demonstrated that optimal IBA concentrations of 3.0, 2.0, and 0.3 mg/l resulted in 100% somatic embryogenesis rates and averages of 11.3, 10.0, and 8.6 somatic embryos per explant for leaf disks, petiole, and root segments, respectively. The primary somatic embryos were used to conduct secondary somatic embryogenesis and the following treatments, in a gradient series, were examined: 0.3–4.0 mg/l IBA, 10–70 g/l sucrose and 0.2–3.0 mg/l abscisic acid (ABA). The results indicated that IBA was more effective than sucrose and ABA, and 3.0 mg/l IBA was the most suitable concentration for secondary somatic embryogenesis. Histological preparations indicated a multi-cellular origin of secondary somatic embryos and different morphological developmental stages during secondary somatic embryogenesis. Primary and secondary somatic embryos germinated readily and developed into normal plantlets after 2 weeks in woody plant medium (WPM, Lloyd and McCown 1980) with 20 g/l sucrose. At 4–5 cm in length, plantlets were transferred to soil (1:1 v/v of peat moss and sand) and the survival rate was 89% after 4 weeks under greenhouse conditions. This system provides a viable contribution to A. elata gene transformation, breeding and regeneration.

Keywords

Aralia elata Seem. Somatic embryogenesis Plant regeneration Medicinal plant Tissue culture 

Abbreviations

SH

Schenk and Hildebrandt (1972)

IBA

Indolebutyric acid

ABA

Abscisic acid

MS

Murashige and Skoog (1962)

2,4-D

2,4-Dichlorophenoxyacetic acid

BA

6-Benzyladenine

References

  1. Ahn DK (1998) Illustrated book of Korean medicinal herbs. Kyo-Hak Publishing Co., Seoul, p 720Google Scholar
  2. Alkhateeb AA (2006) Somatic embryogenesis in date palm (Phoenix dactylifera L.) cv. Sukary in response to sucrose and polyethylene glycol. Biotechnology 5:466–470. doi:10.3923/biotech.2006.466.470 CrossRefGoogle Scholar
  3. Amemiya K, Mochizuki T (2002) Somatic embryo formation and plant regeneration in ‘Zaoh’ line No.2 of Japanese angelica tree (Aralia elata Seem.). Plant Biotechnol 19:383–387Google Scholar
  4. Amemiya K, Fujiki T, Hyuga S (1992) Micropropagation in Japanese angelica tree by tissue culture. Yamanashi Agri Rec Cen 5:11–22 (in Japanese)Google Scholar
  5. Baker CM, Wetzstein HY (1995) Repetitive somatic embryogenesis in peanut cotyledon cultures by continual exposure to 2,4-D. Plant Cell Tissue Organ Cult 40:249–254. doi:10.1007/BF00048131 CrossRefGoogle Scholar
  6. Canhoto JM, Rama SC, Cruz GS (2006) Somatic embryogenesis and plant regeneration in carob (Ceratonia siliqua L.). In Vitro Cell Dev Biol Plant 42:514–519. doi:10.1079/IVP2006819 CrossRefGoogle Scholar
  7. Cheong EJ, Pooler MR (2004) Factors affecting somatic embryogenesis in Prunus incisa cv. February Pink. Plant Cell Rep 22:810–815. doi:10.1007/s00299-004-0771-5 CrossRefPubMedGoogle Scholar
  8. Durham RE, Parrott WA (1992) Repetitive somatic embryogenesis from peanut cultures in liquid medium. Plant Cell Rep 11:122–125. doi:10.1007/BF00232163 CrossRefGoogle Scholar
  9. Finer JJ, Nagaswa A (1988) Development of an embryogenic suspension culture of soybean (Glycine max Merrill.). Plant Cell Tissue Organ Cult 15:125–136. doi:10.1007/BF00035754 CrossRefGoogle Scholar
  10. Guo M, Zhang L, Liu Z (2009) Analysis of saponins from leaves of Aralia elata by liquid chromatography and multi-stage tandem mass spectrometry. Anal Sci 25:753–758. doi:10.2116/analsci.25.753 CrossRefPubMedGoogle Scholar
  11. Jha TB, Mukherjee P, Datta MM (2007) Somatic embryogenesis in Jatropha curcas Linn., an important biofuel plant. Plant Biotechnol Rep 1:135–140. doi:10.1007/s11816-007-0027-2 CrossRefGoogle Scholar
  12. Kang HJ, Anbazhagan VR, You XL, Moon HK, Yi JS, Choi YE (2006) Production of transgenic Aralia elata regenerated from Agrobacterium rhizogenes-mediated transformed roots. Plant Cell Tiss Organ Cult 85:187–196. doi:10.1007/s11240-005-9070-2 CrossRefGoogle Scholar
  13. Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K, Higashi K, Satoh S, Kamada H, Harada H (1992) Isolation and characterization of a cDNA that encodes ECP31, an embryogenic-cell protein from carrot. Plant Mol Biol 19:239–249. doi:10.1007/BF00027345 CrossRefPubMedGoogle Scholar
  14. Lee KS, Soh WY (1993a) Somatic embryogenesis and structural aberrancy of embryos in tissue cultures of Aralia cordata Thunb. Korean J Plant Tissue Cult 20:77–83Google Scholar
  15. Lee KS, Soh WY (1993b) Effect of cytokinins on the number of cotyledons of somatic embryos from cultured cells of Aralia cordata Thunb. Korean J Plant Tissue Cult 20:171–175Google Scholar
  16. Lee KS, Lee JC, Soh WY (2002) High frequency plant regeneration from Aralia cordata somatic embryos. Plant Cell Tissue Organ Cult 68:241–246. doi:10.1023/A:1013989707725 CrossRefGoogle Scholar
  17. Lloyd G, McCown B (1980) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Int Plant Prop Soc Proc 30:421–427Google Scholar
  18. Lou H, Kako S (1994) Somatic embryogenesis and plant regeneration in cucumber. HortScience 29:906–909Google Scholar
  19. Lou H, Kako S (1995) Role of high sugar concentrations in inducing somatic embryogenesis from cucumber cotyledons. Sci Hortic 64:11–20. doi:10.1016/0304-4238(95)00833-8 CrossRefGoogle Scholar
  20. Moon HK, Youn Y, Yi JS (1998) Somatic embryogenesis, plant regeneration, and field establishment from tissue culture of winter buds of 10-year-old Aralia elata. J Korean For Soc 87:57–61Google Scholar
  21. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  22. Nishiwaki M, Fujino K, Koda Y, Masuda K, Kikuta Y (2000) Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta 211:756–759. doi:10.1007/s004250000387 CrossRefPubMedGoogle Scholar
  23. Ogata Y, Iizuka M, Nakayama D, Ikeda M, Kamada H, Koshiba T (2005) Possible involvement of abscisic acid in the induction of secondary somatic embryogenesis on seed-coat-derived carrot somatic embryos. Planta 221:417–423. doi:10.1007/s00425-004-1449-5 CrossRefPubMedGoogle Scholar
  24. Raemakers CJJM (1993) Primary and cyclic somatic embryogenesis in cassava. Ph.D. Thesis, Agricultural University of Wageningen, The NetherlandsGoogle Scholar
  25. Raemakers CJJM, Jacobsen E, Visser RGF (1995) Secondary somatic embryogenesis and applications in plant breeding. Euphytica 81:93–107. doi:10.1007/BF00022463 CrossRefGoogle Scholar
  26. Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204. doi:10.1139/b72-026 CrossRefGoogle Scholar
  27. Sun JY, Li WM, Zhang HS, Zhao JL, Yin XL, Wang LA (2009) Somatic embryogenesis and plant regeneration in glandless upland cotton (Gossypium hirsutum L.). Front Agric China 3:279–283. doi:10.1007/s11703-009-0060-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jin-Ling Dai
    • 1
  • Xiao Tan
    • 1
  • Ya-Guang Zhan
    • 1
  • Yun-Qiang Zhang
    • 1
  • Shuang Xiao
    • 1
  • Ying Gao
    • 1
  • Dong-Wei Xu
    • 1
  • Tao Wang
    • 1
  • Xiao-Chun Wang
    • 1
  • Xiang-Ling You
    • 1
  1. 1.College of Life SciencesNortheast Forestry UniversityHarbinChina

Personalised recommendations