Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 100, Issue 1, pp 97–105 | Cite as

In vitro regeneration and morphogenesis studies in common bean

  • Kingdom Kwapata
  • Robab Sabzikar
  • Mariam B. Sticklen
  • James D. Kelly
Original Paper

Abstract

An efficient protocol for high frequency in vitro regeneration of multiple shoots and somatic embryos from the embryonic axis of common bean (Phaseolus vulgaris) was developed. Ten common bean cultivars representing a wide range of diversity among current commercial market classes were used for in vitro regeneration evaluation in our study. These cultivars were tested on 63 different media formulations consisting of combinations of cytokinins, namely benzyladenine (BA) and thidiazuron (TDZ) at concentration levels of 0.0, 1.0, 2.5, 5.0 and 10.0 mg l−1 and auxin, namely naphthalene acetic acid (NAA) and indole-3-acetic acid (IAA) at concentration levels of 0.0, 0.05, 0.1 and 1.0 mg l−1. P. vulgaris cv. Olathe pinto bean performed the best producing over 20 multiple shoots per explant while cv. Condor black bean was the poorest with nine multiple shoots per explant. The optimum media for regeneration of multiple shoots was 4.4 mg l−1 Murashige and Skoog (MS) containing 2.5 mg l−1 BA and 0.1 mg l−1 IAA supplemented with 30 mg l−1 silver nitrate. Adventitious shoots and somatic embryos were regenerated on 4.4 mg l−1 MS medium containing 1 mg l−1 TDZ and 0.05 mg l−1 NAA supplemented with 30 mg l−1 silver nitrate or activated charcoal. Efficient and effective rooting of plantlets was achieved by dipping the cut end base of in vitro regenerated shoots in 1.0 mg l−1 indole-3-butyric acid (IBA) solution and culturing on media containing 4.4 mg l−1 MS supplemented by 0.1 mg l−1 IAA, NAA or IBA.

Keywords

In vitro Organogenesis Somatic embryogenesis Embryonic axis P. vulgaris L. 

Notes

Acknowledgments

Kingdom Kwapata’s Ph.D. research has been supported by funding from the W. Fulbright fellowship, the W. Leo and Rae Phelps Mericle Memorial Scholarship and the MSU College of Agriculture and Natural Sciences. The authors would like to thank Dr. Sasha Kravchenko for providing advice on the statistical design, and Halima Awale for her assistance on maintaining plants in greenhouses. Scanning microscopy presented in this article was performed through services of the MSU Center for Advanced Microscopy.

References

  1. Abdelwahd R, Hakam N, Labhilili M, Udupa SM (2008) Use of an absorbent and antioxidants to reduce the effect of leached phenolics in in vitro plantlet regeneration of faba bean. Afr J Biotechnol 7(8):997–1002Google Scholar
  2. Ahmed E, Ahmed EE, Bisztray GYD, Velich I (2002) Plant regeneration from seedling explants of common bean (Phaseolus vulgaris L.). Acta Biologica Szegediensis 46(3–4):27–28Google Scholar
  3. Aragao FJL, Barros LMG, Brasileiro ACM, Ribeiro SG, Smith FD, Faria JC, Rech EL (1996) Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L.) co transformed via particle bombardment. Theor Appl Genet 93:142–150CrossRefGoogle Scholar
  4. Aragao FJL, Ribeiro SG, Barros LMG, Brasileiro ACM, Maxwell DP, Rech EL, Faria JC (1998) Transgenic beans (Phaseolus vulgaris L.) engineered to express viral antisense RNAs showed delayed and attenuated symptoms to bean golden mosaic geminivirus. Mol Breeding 4:491–499CrossRefGoogle Scholar
  5. Aragao FJL, Viana GR, Albino MMC, Rech EL (2001) Transgenic dry bean tolerant to the herbicide glufosinate ammonium. Crop Sci 42:1298–1302Google Scholar
  6. Arellano J, Fuentes SI, Castillo-Espanã P, Hernández G (2009) Regeneration of different cultivars of common bean (Phaseolus vulgaris L.) via indirect organogenesis. Plant Cell Tiss Organ Cult 96:1–11CrossRefGoogle Scholar
  7. Arnaldos TL, Munoz R, Ferrer MA, Calderon AA (2001) Changes in phenol content during strawberry (Fragaria × ananasa, cv. Chandler) callus culture. Physiol Plant 113:315–322CrossRefGoogle Scholar
  8. Blair MW, Caldas GV, Avila P, Lascano C (2006) Tannin content of commercial classes of common bean. Annu Rep Bean Improv Coop 49:151–152Google Scholar
  9. Bonfim K, Faria JC, Nogueira EOPL, Mendes EA, Aragao FJL (2007) RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant-Microbe Interact 20:717–726Google Scholar
  10. Brasileiro ACM, Aragao FJL, Rossi S, Dusi DMA, Barros LMG, Rech EL (1996) Susceptibility of common and tepary beans to Agrobacterium spp. strains and improvement of Agrobacterium-mediated transformation using microprojectile bombardment. J Am Soc Hort Sci 121:810–815Google Scholar
  11. Delgado-Sanchez P, Saucedo-Ruiz M, Guzman-Maldonado SH, Villordo-Pineda E, Gonzalez-Chavira M, Faire-VelAzquez S, Acosta-Gallegos JA, Mora-Aviles A (2006) An organogenic plant regeneration system for common bean (Phaseolus vulgaris L.). Plant Sci 170:822–827CrossRefGoogle Scholar
  12. Dillen W, De Clercq J, Goosens A, Van Montagu M, Angenon G (1997) Agrobacterium mediated transformation of Phaseolus acutifolius A. Gray. Theor Appl Genet 94:15–158Google Scholar
  13. Dillen W, Zambre M, De Clercq J, Goossens A, Kapila J, Vranova E, Van Montagu M, Angenon G (2000) In vitro regeneration and Agrobacterium-mediated transformation of Phaseolus vulgaris L. (common bean) and P. acutifolius A. Gray (Tepary Bean). Acta Hort 521:ISHSGoogle Scholar
  14. Klomparens KS, Flegler S, Hooper GR (1986) Procedures for transmission and scanning electron microscopy for biological and medical sciences—a laboratory manual. Ladd Research Industries, BurlingtonGoogle Scholar
  15. Liu Z, Park B-J, Kanno A, Kameya T (2005) The novel use of combination of sonication and vacuum infiltration in Agrobacterium-mediated transformation of kidney beans (Phaseolus vulgaris) with lea gene. Mol Breeding 16:189–197CrossRefGoogle Scholar
  16. Malik KA, Saxena PK (1992) Regeneration in Phaseolus vulgaris L.: high-frequency induction of direct shoot formation in intact seedlings by benzyladenine and thidiazuron. Planta 186:384–389 84-389; 1.nta 2CrossRefGoogle Scholar
  17. Mohamed MF, Read PE, Coyne DP (1991) Plant regeneration in vitro from the embryonic axes of common and tepary beans. Annu Rep Bean Improv Coop 34:150–151Google Scholar
  18. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  19. Ozyigit II (2008) Phenolic changes during in vitro organogenesis of cotton (Gossypium hirsutum L.) shoot tips. Afr J Biotechnol 7(8):1145–1150Google Scholar
  20. Santalla M, Power JB, Davey MR (1998) Efficient in vitro shoot regeneration responses of Phaseolus vulgaris and P. coccineus. Euphytica 102:195–202CrossRefGoogle Scholar
  21. Singh SP (2001) Broadening the genetic base of common bean cultivars: a review. Crop Sci 41:1659–1675CrossRefGoogle Scholar
  22. Sticklen MB, Oraby HF (2005) Shoot apical meristem: a sustainable explant for genetic transformation of cereal crops. In Vitro Cell Dev Biol Plant 41:187–200CrossRefGoogle Scholar
  23. Veltcheva M, Svetleva D, Petkova SP, Pearl A (2005) In vitro regeneration and genetic transformation of common bean (Phaseolus vulgaris L.)—problems and progress. Sci Hortic 107:2–10CrossRefGoogle Scholar
  24. Zambre MA, De Clercq J, Vranova E, Van Montagu M, Angenon G, Dillen W (1998) Plant regeneration from embryo-derived callus in Phaseolus vulgaris L. (common bean) and P. acutifolius A. Gray (tepary bean). Plant Cell Rep 17:626–630CrossRefGoogle Scholar
  25. Zambre MA, Geerts P, Maqeut A, Van Montagu M, Dillen W, Angenon G (2001) Regeneration of fertile plants from callus in Phaseolus polyanthus Greenman (Year Bean). Ann Bot 88:371–377CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Kingdom Kwapata
    • 1
  • Robab Sabzikar
    • 1
  • Mariam B. Sticklen
    • 1
  • James D. Kelly
    • 1
  1. 1.Department of Crop and Soil SciencesMichigan State UniversityEast LansingUSA

Personalised recommendations