Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 98, Issue 2, pp 187–196 | Cite as

Detection of DNA changes in somaclonal mutants of rice using SSR markers and transposon display

  • Dong-Ying Gao
  • Veronica A. Vallejo
  • Bing He
  • Yun-Chao Gai
  • Li-Hua Sun
Original Paper


Somaclonal variation detected in plant tissues grown in vitro can be heritable, and thus provides an opportunity for plant breeders and geneticists to generate novel variants. However, incidence of somaclonal variation is problematic for plant transformation efforts and for micropropagation of true-to-type clones. The origin of somaclonal variation is still not well understood. In this study, 120 SSR markers, distributed across all 12 chromosomes of rice, have been used to analyze eight somaclonal mutants derived from seven different cultivars. Of these, 13 SSRs have detected polymorphisms between the bacterial blight resistant mutant HX-3 and its wild-type Minghui 63. While, ten SSRs have revealed differences between a purple sheath mutant, Z418, and the wild-type C418. None of the SSRs have been able to distinguish between tall and dwarf mutants, 02428h and A418, and their wild-type counterparts, respectively. Interestingly, six SSRs have identified differences in at least three mutant lines and their corresponding wild-type genotypes. These results have suggested that some SSR markers in the rice genome may detect higher numbers of polymorphisms than others. In addition, a transposon display (TD) of five active rice transposons, Tos17, Karma, mPing, nDart and dTok, has been conducted to evaluate DNA changes of eight mutants. Some mutant lines, such as HX-3 and Z418, have exhibited differences from their corresponding wild-type genotypes in TDs with two transposons. This has indicated that new insertions of transposons are involved in somaclonal variation derived from tissue culture. Taken together, these results suggest that multiple molecular mechanisms are responsible for somaclonal variation detected in tissue culture of rice.


Somaclonal variation SSR Transposon display Rice 



Simple sequence repeat


Transposon display


Restriction fragment length polymorphism


Random amplified polymorphic DNA


Amplified fragment length polymorphism



We thank Dr. Ning Jiang (Department of Horticulture, Michigan State University) for her support and guidance on this study. We also thank Professor Meifang Li at CAAS and Professor Changdeng Yang at CNRRI for kindly providing the rice mutants and their wildtypes. This study was supported by grant from National Natural Science Foundation of China (30471066) and the Scholarship for Overseas Training Program from the government of Jiangsu province in China to Dongying Gao.

Supplementary material

11240_2009_9551_MOESM1_ESM.doc (42 kb)
DOC 42 kb


  1. Adkins SW, Kunanuvatchaidach R, Godwin ID (1995) Somaclonal variation in rice—drought tolerance and other agronomic characters. Aust J Bot 43:201–209. doi: 10.1071/BT9950201 CrossRefGoogle Scholar
  2. Alves E, Ballesteros I, Linacero R, Vázquez AM (2005) RYS1, a foldback transposon, is activated by tissue culture and shows preferential insertion points into the rye genome. Theor Appl Genet 111:431–436. doi: 10.1007/s00122-005-2013-9 PubMedCrossRefGoogle Scholar
  3. Arencibia A, Gentinetta E, Cuzzoni E, Castiglione S, Kohli A, Vain P, Leech M, Christou P, Sala F (1998) Molecular analysis of the genome of transgenic rice (Oryza sativa L.) plants produced via particle bombardment or intact cell electroporation. Mol Breed 4:99–109. doi: 10.1023/A:1009627409668 CrossRefGoogle Scholar
  4. Arencibia A, Carmona ER, Cornide MT, Castiglione S, O’relly J, Chinea A, Oramai P, Sala F (1999) Somaclonal variation in insect-resistance transgenic sugarcane (Saccharum hibrid) plants produced by cell electroporation. Transgenic Res 8:349–360. doi: 10.1023/A:1008900230144 CrossRefGoogle Scholar
  5. Bao PH, Granata S, Castiglione S, Wang G, Giordani C, Cuzzoni E, Damiani G, Bandi C, Datta SK, Datta K, Potrykus I, Callegarin A, Sala F (1996) Evidence for genomic changes in transgenic rice (Oryza sativa L.) recovered from protoplasts. Transgenic Res 5:97–103. doi: 10.1007/BF01969427 PubMedCrossRefGoogle Scholar
  6. Barros EG, Tingey S, Rafalski JA (2000) Sequence characterization of hypervariable regions in the soybean genome: leucine-rich repeats and simple sequence repeats. Genet Mol Biol 23:411–415. doi: 10.1590/S1415-47572000000200029 CrossRefGoogle Scholar
  7. Bregitzer P, Halbert SE, Lemaux PG (1998) Somaclonal variation in the progeny of transgenic barley. Theor Appl Genet 96:421–425. doi: 10.1007/s001220050758 CrossRefGoogle Scholar
  8. Breiman A, Rotem-Abarbanel D, Karp A, Shaskin H (1987) Heritable somaclonal variation in wild barley (Hordeum spontaneum). Theor Appl Genet 74:1432–2242. doi: 10.1007/BF00290092 CrossRefGoogle Scholar
  9. Casa AM, Brouwer C, Nagel A, Wang L, Zhang Q, Kresovich S, Wessler SR (2000) Inaugural article: the MITE family heartbreaker (Hbr): molecular markers in maize. Proc Natl Acad Sci USA 97:10083–10089. doi: 10.1073/pnas.97.18.10083 PubMedCrossRefGoogle Scholar
  10. Chowdari KV, Ramakrishna W, Tamhankar SA, Hendre RR, Gupta VS, Sahasrabudhe NA, Ranjekar PK (1998) Identification of minor DNA variations in rice somaclonal variants. Plant Cell Rep 18:55–58. doi: 10.1007/s002990050531 CrossRefGoogle Scholar
  11. Dennis ES, Brettell RIS, Peacock WJ (1987) A tissue culture induced Adh1 null mutant of maize results from a single base change. Mol Gen Genet 210:181–183. doi: 10.1007/BF00337777 CrossRefGoogle Scholar
  12. Devarumath RM, Nandy S, Rani V, Marimuthu S, Muraleedharan N, Raina SN (2002) RAPD, ISSR and RFLP fingerprints as useful markers to evaluate genetic integrity of micropropagated plants of three diploid and triploid elite tea clones representing Camellia sinensis (China type) and C. assamica ssp. assamica (Assam-India type). Plant Cell Rep 21:166–173. doi: 10.1007/s00299-002-0496-2 CrossRefGoogle Scholar
  13. Evans DA, Sharp WR (1983) Single gene mutations in tomato plants regenerated from tissue culture. Science 221:949–951. doi: 10.1126/science.221.4614.949 PubMedCrossRefGoogle Scholar
  14. Fujino K, Sekiguchi H, Kiguchi T (2005) Identification of an active transposon in intact rice plants. Mol Genet Genomics 273:150–157. doi: 10.1007/s00438-005-1131-z PubMedCrossRefGoogle Scholar
  15. Galtier N, Enard D, Radondy Y, Bazin E, Belkhir K (2006) Mutation hot spots in mammalian mitochondrial DNA. Genome Res 16:215–222. doi: 10.1101/gr.4305906 PubMedCrossRefGoogle Scholar
  16. Gao DY, Xu ZG, Chen ZY, Sun LH, Sun QM, Lu F, Hu BS, Liu YF (2002) Identification of a resistance gene to bacterial blight (Xanthomonas oryzae pv. oryzae) in a somaclonal mutant HX-3 of indica rice. Yi Chuan Xue Bao 29:138–143PubMedGoogle Scholar
  17. Gao DY, Liu AM, Zhou YH, Cheng YJ, Xiang YH, Sun LH, Zhai WX (2005) Molecular mapping of a bacterial blight resistance gene Xa-25 in rice. Yi Chuan Xue Bao 32:183–188PubMedGoogle Scholar
  18. Godwin ID, Sangduen N, Kunanuvatchaidach R, Piperidis G, Adkins SW (1997) RAPD polymorphisms among variant and phenotypically normal rice (Oryza sativa var. indica) somaclonal progenies. Plant Cell Rep 16:320–324. doi: 10.1007/BF01088289 Google Scholar
  19. Guo WL, Wu R, Zhang YF, Liu XM, Wang HY, Gong L, Zhang ZH, Liu B (2007) Tissue culture-induced locus-specific alteration in DNA methylation and its correlation with genetic variation in Codonopsis lanceolata Benth. et Hook. f. Plant Cell Rep 26:1297–1307. doi: 10.1007/s00299-007-0320-0 PubMedCrossRefGoogle Scholar
  20. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282. doi: 10.1046/j.1365-313X.1994.6020271 PubMedCrossRefGoogle Scholar
  21. Hirochika H (1993) Activation of tobacco retrotransposons during tissue culture. EMBO J 12:2521–2528PubMedGoogle Scholar
  22. Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788. doi: 10.1073/pnas.93.15.7783 PubMedCrossRefGoogle Scholar
  23. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53. doi: 10.1126/science.1905840 PubMedCrossRefGoogle Scholar
  24. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800. doi: 10.1038/nature03895 CrossRefGoogle Scholar
  25. Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 421:163–167. doi: 10.1038/nature01214 PubMedCrossRefGoogle Scholar
  26. Kikuchi K, Terauchi K, Wada M, Hirano HY (2003) The plant MITE mPing is mobilized in anther culture. Nature 421:167–170. doi: 10.1038/nature01218 PubMedCrossRefGoogle Scholar
  27. Komatsu M, Shimamoto K, Kyozuka J (2003) Two-step regulation and continuous retrotransposition of the rice LINE-type retrotransposon Karma. Plant Cell 15:1934–1944. doi: 10.1105/tpc.011809 PubMedCrossRefGoogle Scholar
  28. Kubis SE, Castilho AM, Vershinin AV, Heslop-Harrison JS (2003) Retroelements, transposons and methylation status in the genome of oil palm (Elaeis guineensis) and the relationship to somaclonal variation. Plant Mol Biol 52:69–79. doi: 10.1023/A:1023942309092 PubMedCrossRefGoogle Scholar
  29. Larkin PJ, Scocroft WR (1981) Somaclonal variation: a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214. doi: 10.1007/BF02342540 CrossRefGoogle Scholar
  30. Lee M, Phillips RL (1988) The chromosomal basis of somaclonal variation. Annu Rev Plant Physiol Plant Mol Biol 39:413–437. doi: 10.1146/annurev.pp.39.060188.002213 CrossRefGoogle Scholar
  31. Linacero R, Alves EF, Vázquez AM (2000) Hot spots of DNA instability revealed through the study of somaclonal variation in rye. Theor Appl Genet 100:506–511. doi: 10.1007/s001220050066 CrossRefGoogle Scholar
  32. Lutts S, Bouharmont J, Kinet JM (1999) Physiological characterisation of salt-resistant rice (Oryza sativa) somaclones. Aust J Bot 47:835–849. doi: 10.1071/BT97074 CrossRefGoogle Scholar
  33. Moon S, Jung KH, Lee DE, Jiang WZ, Koh HJ, Heu MH, Lee DS, Suh HS, An G (2006) Identification of active transposon dTok, a member of the hAT family, in rice. Plant Cell Physiol 47:1473–1483. doi: 10.1093/pcp/pcl012 PubMedCrossRefGoogle Scholar
  34. Muller E, Brown PTH, Harke S, Lorz H (1990) DNA variation in tissue-culture-derived rice plants. Theor Appl Genet 80:673–679. doi: 10.1007/BF00224228 CrossRefGoogle Scholar
  35. Murashige T (1974) Plant propagation through tissue culture. Annu Rev Plant Physiol 25:135–166. doi: 10.1146/annurev.pp.25.060174.001031 CrossRefGoogle Scholar
  36. Nakazaki T, Okumoto Y, Horibata A, Yamahira S, Teraishi M, Nishida H, Inoue H, Tanisaka T (2003) Mobilization of a transposon in the rice genome. Nature 421:170–172. doi: 10.1038/nature01219 PubMedCrossRefGoogle Scholar
  37. Ngezahayo F, Dong Y, Liu B (2007) Somaclonal variation at the nucleotide sequence level in rice (Oryza sativa L.) as revealed by RAPD and ISSR markers, and by pairwise sequence analysis. J Appl Genet 48:329–336PubMedGoogle Scholar
  38. Oono K (1985) Putative homozygous mutations in regenerated plants of rice. Mol Gen Genet 198:1432–1874. doi: 10.1007/BF00332926 CrossRefGoogle Scholar
  39. Oono D, Niizeki M, Senda M, Ishikawa R, Akada S, Harada T (1999) An analysis of somaclonal variation in progenies regenerated from rice calli. Rice Genet Newsl 16:81–83Google Scholar
  40. Peredo EL, A’ngeles Revilla M, Arroyo-Garcı’a R (2006) Assessment of genetic and epigenetic variation in hop plants regenerated from sequential subcultures of organogenic call. J Plant Physiol 163:1071–1079. doi: 10.1016/j.jplph.2005.09 PubMedCrossRefGoogle Scholar
  41. Ray T, Dutta I, Saha P, Das S, Roy SC (2006) Genetic stability of three economically important micropropagated banana (Musa spp.) cultivars of lower Indo-Gangetic plains, as assessed by RAPD and ISSR markers. Plant Cell Tissue Organ Cult 85:11–21. doi: 10.1007/s11240-005-9044-4 CrossRefGoogle Scholar
  42. Richards RI, Sutherland GR (1994) Simple repeat DNA is not replicated simply. Nat Genet 6:114–116. doi: 10.1038/ng0294-114 PubMedCrossRefGoogle Scholar
  43. Ryan SA, Larkin PJ, Ellison FW (1987) Somaclonal variation in some agronomic and quality characters in wheat. Theor Appl Genet 74:77–82. doi: 10.1007/BF00290087 CrossRefGoogle Scholar
  44. Schellenbaum P, Mohler V, Wenzel G, Walter B (2008) Variation in DNA methylation patterns of grapevine somaclones (Vitis vinifera L.). BMC Plant Biol 8:78. doi: 10.1186/1471-2229-8-78 PubMedCrossRefGoogle Scholar
  45. Smýkal P, Valledor L, Rodríguez R, Griga M (2007) Assessment of genetic and epigenetic stability in long-term in vitro shoot culture of pea (Pisum sativum L.). Plant Cell Rep 26:1985–1998. doi: 10.1007/s00299-007-0413-9 PubMedCrossRefGoogle Scholar
  46. Sun LH, Wang YF, Jiang N, Li HB (1994) A recessive tall culm somatic mutant with wide compatibility in rice (Oryza sativa L.). Acta Genetica Sin 21:67–73Google Scholar
  47. Takagi K, Ishikawa N, Maekawa M, Tsugane K, Iida S (2007) Transposon display for active DNA transposons in rice. Genes Genet Syst 82:109–122. doi: 10.1266/ggs.82.109 PubMedCrossRefGoogle Scholar
  48. Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452. doi: 10.1101/gr.184001 PubMedCrossRefGoogle Scholar
  49. Touraev A, Stoger E, Voronin V, Heberle-Bors E (1997) Plant male germ line transformation. Plant J 12:949–956. doi: 10.1046/j.1365-313X.1997.12040949 CrossRefGoogle Scholar
  50. Tsugane K, Maekawa M, Takagi K, Takahara H, Qian Q, Eun CH, Iida S (2006) An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice. Plant J 45:46–57. doi: 10.1111/j.1365-313X.2005.02600 PubMedCrossRefGoogle Scholar
  51. Yang H, Tabei Y, Kamad H, Kayano T, Takaiwa F (1999) Detection of somaclonal variation in cultured rice cells using digoxigenin-based random amplified polymorphic DNA. Plant Cell Rep 18:520–526. doi: 10.1007/s002990050615 CrossRefGoogle Scholar
  52. Zheng KL, Castiglone S, Biasini MG, Biroli A, Morandi C, Sala F (1987) Nuclear DNA amplification in cultured cells of Oryza sativa L. Theor Appl Genet 74:65–70. doi: 10.1007/BF00290085 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Dong-Ying Gao
    • 1
    • 2
  • Veronica A. Vallejo
    • 2
  • Bing He
    • 1
  • Yun-Chao Gai
    • 1
  • Li-Hua Sun
    • 1
  1. 1.Institute of Food CropsJiangsu Academy of Agricultural SciencesNanjingChina
  2. 2.Department of HorticultureMichigan State UniversityEast LansingUSA

Personalised recommendations