Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 98, Issue 2, pp 147–156 | Cite as

In vitro production of radiolabeled red clover (Trifolium pratense) isoflavones

  • Nancy J. Engelmann
  • Adam Reppert
  • Gad Yousef
  • Randy B. Rogers
  • Mary Ann LilaEmail author
Original Paper


Red clover isoflavones are increasingly used in dietary supplements for their purported estrogenic effects. However, little is known about their metabolism in animals due to a lack of commercially available isotopically labeled tracers. The goal of this research was to establish red clover cell culturing methodology for 14C-biolabeling of isoflavones. When root, leaf, and petiole-derived suspension cultures were grown in darkness or light, dark-grown, petiole-derived solution cultures produced the highest concentrations of the two major red clover isoflavones, formononetin (0.67 mg/g FM inoculum) and biochanin A (0.13 mg/g FM inoculum). Varying levels and timing of copper chloride elicitor did not significantly affect isoflavone accumulation. Approximately 38% of the 14C-sucrose dose accumulated in the cells. Eighteen percent of the initial labeled dose was detected in the isoflavone-rich methanolic extract and of that, 22% accumulated in isoflavones.


Red clover Isoflavones Metabolic tracers Plant cell culture Copper chloride Radiolabeling Trifolium pratense 



This research was supported by the National Center for Complementary and Alternative Medicine sponsored Purdue-Universtiy of Alabama-Birmingham Botanicals Center for Dietary Supplement Research (NIH, 2 P50 AT000477-06). The authors would like to thank the University of Illinois James Scholar Program (College of Liberal Arts and Sciences). Nicola Lancki and Aaron McKerracher assisted with tissue culture maintenance and cell extractions. Contributions were also made by William Helferich with TLC analysis assistance, Tristan Kraft with helpful discussions regarding experimental design, and Jeevan Prasain with preliminary isoflavone analyses.


  1. Arora A, Nair MG, Strasburg GM (1998) Antioxidant activities of isoflavones and their biological metabolites in a liposomal system. Arch Biochem Biophys 356:133–141. doi: 10.1006/abbi.1998.0783 PubMedCrossRefGoogle Scholar
  2. Beach KH, Smith RR (1979) Plant regeneration from callus of red and crimson clover. Plant Sci Lett 16:231–237CrossRefGoogle Scholar
  3. Beck V, Rohr U, Jungbauer A (2005) Phytoestrogens derived from red clover: an alternative to estrogen replacement therapy? J Steroid Biochem Mol Biol 94:499–518. doi: 10.1016/j.jsbmb.2004.12.038 PubMedCrossRefGoogle Scholar
  4. Campbell JK, Rogers RB, Lila MA, Erdman JW Jr (2006) Biosynthesis of 14C-phytoene from tomato cell suspension cultures (Lycopersicon esculentum) for utilization in prostate cancer cell culture studies. J Agric Food Chem 54:747–755. doi: 10.1021/jf0581269 PubMedCrossRefGoogle Scholar
  5. Chandra A, Rana J, Li Y (2001) Separation, identification, quantification, and method validation of anthocyanins in botanical supplement raw materials by HPLC and HPLC-MS. J Agric Food Chem 49:3515–3521. doi: 10.1021/jf010389p PubMedCrossRefGoogle Scholar
  6. Ebel J, Mithofer A (1998) Early events in the elicitation of plant defence. Planta 206:335–348CrossRefGoogle Scholar
  7. Gagnon H, Ibrahim RK (1997) Effects of various elicitors on the accumulation and secretion of isoflavonoids in white lupin. Phytochemistry 44:1463–1467. doi: 10.1016/S0031-9422(96)00735-2 CrossRefGoogle Scholar
  8. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158PubMedCrossRefGoogle Scholar
  9. Grusak MA, Rogers RB, Yousef GG, Erdman JWJ, Lila MA (2004) An enclosed-chamber labeling system for the safe 14C-enrichment of phytochemicals in plant cell suspension cultures. In Vitro Cell Dev Biol Plant 40:80–85. doi: 10.1079/IVP2003484 CrossRefGoogle Scholar
  10. Hidalgo LA, Chedraui PA, Morocho N, Ross S, San Miguel G (2005) The effect of red clover isoflavones on menopausal symptoms, lipids and vaginal cytology in menopausal women: a randomized, double-blind, placebo-controlled study. Gynecol Endocrinol 21:257–264. doi: 10.1080/09513590500361192 PubMedCrossRefGoogle Scholar
  11. Hur H, Rafii F (2000) Biotransformation of the isoflavonoids biochanin A, formononetin, and glycitein by Eubacterium limosum. FEMS Microbiol Lett 192:21–25. doi: 10.1111/j.1574-6968.2000.tb09353.x PubMedCrossRefGoogle Scholar
  12. Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139:4252–4263. doi: 10.1210/en.139.10.4252 PubMedCrossRefGoogle Scholar
  13. Lin LZ, He XG, Lindenmaier M, Yang J, Cleary M, Qiu SX, Cordell GA (2000) LC-ESI-MS study of the flavonoid glycoside malonates of red clover (Trifolium pratense). J Agric Food Chem 48:354–365. doi: 10.1021/jf991002+ PubMedCrossRefGoogle Scholar
  14. Maxwell CA, Phillips DA (1990) Concurrent synthesis and release of nod-gene-inducing flavonoids from alfalfa roots. Plant Physiol 93:1552–1558. doi: 10.1104/pp.93.4.1552 PubMedCrossRefGoogle Scholar
  15. Mithofer A, Schulze B, Boland W (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett 566:1–5. doi: 10.1016/j.febslet.2004.04.011 PubMedCrossRefGoogle Scholar
  16. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  17. National Center for Complementary and Alternative Medicine (2008) Herbs at a glance: red clover. http://www.nccam.nih/gov/health/redclover
  18. Nestel P, Cehun M, Chronopoulos A, DaSilva L, Teede H, McGrath B (2004) A biochanin-enriched isoflavone from red clover lowers LDL cholesterol in men. Eur J Clin Nutr 58:403–408. doi: 10.1038/sj.ejcn.1601796 PubMedCrossRefGoogle Scholar
  19. Occhiuto F, Pasquale RD, Guglielmo G, Palumbo DR, Zangla G, Samperi S, Renzo A, Circosta C (2007) Effects of phytoestrogenic isoflavones from red clover (Trifolium pratense L.) on experimental osteoporosis. Phytother Res 21:130–134. doi: 10.1002/ptr.2037 PubMedCrossRefGoogle Scholar
  20. Paiva NL, Sun YJ, Dixon RA, Vanetten HD, Hrazdina G (1994) Molecular-cloning of isoflavone reductase from pea (Pisum Sativum L.)—evidence for a 3r-isoflavanone intermediate in (+)-pisatin biosynthesis. Arch Biochem Biophys 312:501–510. doi: 10.1006/abbi.1994.1338 PubMedCrossRefGoogle Scholar
  21. Parry AD, Tiller SA, Edwards R (1994) The effects of heavy metals and root immersion on isoflavonoid metabolism in alfalfa (Medicago sativa L.). Plant Physiol 106:195–202PubMedGoogle Scholar
  22. Preisig CL, Bell JN, Sun YJ, Hrazdina G, Matthews DE, Vanetten HD (1990) Biosynthesis of the phytoalexin pisatin—isoflavone reduction and further metabolism of the product sophorol by extracts of Pisum Sativum. Plant Physiol 94:1444–1448. doi: 10.1104/pp.94.3.1444 PubMedCrossRefGoogle Scholar
  23. Reppert A, Yousef GG, Rogers RB, Lila MA (2008) Isolation of radiolabeled isoflavones from kudzu (Pueraria lobata) root cultures. J Agric Food Chem 56:7860–7865. doi: 10.1021/jf801413z PubMedCrossRefGoogle Scholar
  24. Rogers RB, Smith MAL (1992) Consequences of in vitro and ex vitro root initiation for miniature rose production. J Hortic Sci 67:536–540Google Scholar
  25. Setchell KDR, Cassidy A (1999) Dietary isoflavones: biological effects and relevance to human health. J Nutr 129:758S-767SPubMedGoogle Scholar
  26. Setchell KD, Brown NM, Desai P, Zimmer-Nechemias L, Wolfe BE, Brashear WT, Kirschner AS, Cassidy A, Heubi JE (2001) Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. J Nutr 131:1362S–1375SPubMedGoogle Scholar
  27. Tebayashi S, Ishihara A, Iwamura H (2001) Elicitor-induced changes in isoflavonoid metabolism in red clover roots. J Exp Bot 52:681–689PubMedGoogle Scholar
  28. Tham DM, Gardner CD, Haskell WL (1998) Clinical review 97—potential health benefits of dietary phytoestrogens: a review of the clinical, epidemiological, and mechanistic evidence. J Clin Endocrinol Metab 83:2223–2235. doi: 10.1210/jc.83.7.2223 PubMedCrossRefGoogle Scholar
  29. Tolleson WH, Doerge DR, Churchwell MI, Marques MM, Roberts DW (2002) Metabolism of biochanin A and formononetin by human liver microsomes in vitro. J Agric Food Chem 50:4783–4790. doi: 10.1021/jf025549r PubMedCrossRefGoogle Scholar
  30. Vitrac X, Krisa S, Decendit A, Vercauteren J, Nuhrich A, Monti JP, Deffieux G, Merillon JM (2002) Carbon-14 biolabelling of wine polyphenols in Vitis vinifera cell suspension cultures. J Biotechnol 95:49–56. doi: 10.1016/S0168-1656(01)00441-2 PubMedCrossRefGoogle Scholar
  31. Wang SW, Chen Y, Joseph T, Hu M (2008) Variable isoflavone content of red clover products affects intestinal disposition of biochanin A, formononetin, genistein, and daidzein. J Altern Complement Med 14:287–297. doi: 10.1089/acm.2007.0617 PubMedCrossRefGoogle Scholar
  32. Wu Q, Wang M, Simon JE (2003) Determination of isoflavones in red clover and related species by high-performance liquid chromatography combined with ultraviolet and mass spectrometric detection. J Chromatogr A 1016:195–209. doi: 10.1016/j.chroma.2003.08.001 PubMedCrossRefGoogle Scholar
  33. Yousef GG, Seigler DS, Grusak MA, Rogers RB, Knight CT, Kraft TF, Erdman JW Jr, Lila MA (2004) Biosynthesis and characterization of 14C-enriched flavonoid fractions from plant cell suspension cultures. J Agric Food Chem 52:1138–1145. doi: 10.1021/jf035371o PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Nancy J. Engelmann
    • 1
  • Adam Reppert
    • 1
  • Gad Yousef
    • 2
  • Randy B. Rogers
    • 2
  • Mary Ann Lila
    • 1
    • 2
    Email author
  1. 1.Division of Nutritional SciencesUniversity of IllinoisUrbanaUSA
  2. 2.Department of Natural Resources and Environmental SciencesUniversity of IllinoisUrbanaUSA

Personalised recommendations